Suppr超能文献

利用重组古菌蛋白酶体和非变性聚丙烯酰胺凝胶电泳检测蛋白酶体组装:一种联合方法的实例

Examining Proteasome Assembly with Recombinant Archaeal Proteasomes and Nondenaturing PAGE: The Case for a Combined Approach.

作者信息

Panfair Dilrajkaur, Kusmierczyk Andrew R

机构信息

Department of Biology, Indiana University-Purdue University, Indianapolis (IUPUI).

Department of Biology, Indiana University-Purdue University, Indianapolis (IUPUI);

出版信息

J Vis Exp. 2016 Dec 17(118):54860. doi: 10.3791/54860.

Abstract

Proteasomes are found in all domains of life. They provide the major route of intracellular protein degradation in eukaryotes, though their assembly is not completely understood. All proteasomes contain a structurally conserved core particle (CP), or 20S proteasome, containing two heptameric β subunit rings sandwiched between two heptameric α subunit rings. Archaeal 20S proteasomes are compositionally simpler compared to their eukaryotic counterparts, yet they both share a common assembly mechanism. Consequently, archaeal 20S proteasomes continue to be important models for eukaryotic proteasome assembly. Specifically, recombinant expression of archaeal 20S proteasomes coupled with nondenaturing polyacrylamide gel electrophoresis (PAGE) has yielded many important insights into proteasome biogenesis. Here, we discuss a means to improve upon the usual strategy of coexpression of archaeal proteasome α and β subunits prior to nondenaturing PAGE. We demonstrate that although rapid and efficient, a coexpression approach alone can miss key assembly intermediates. In the case of the proteasome, coexpression may not allow detection of the half-proteasome, an intermediate containing one complete α-ring and one complete β-ring. However, this intermediate is readily detected via lysate mixing. We suggest that combining coexpression with lysate mixing yields an approach that is more thorough in analyzing assembly, yet remains labor nonintensive. This approach may be useful for the study of other recombinant multiprotein complexes.

摘要

蛋白酶体存在于生命的所有领域。它们是真核生物细胞内蛋白质降解的主要途径,尽管其组装过程尚未完全了解。所有蛋白酶体都含有一个结构保守的核心颗粒(CP),即20S蛋白酶体,它包含两个七聚体β亚基环夹在两个七聚体α亚基环之间。与真核生物的20S蛋白酶体相比,古细菌的20S蛋白酶体在组成上更简单,但它们都共享一种共同的组装机制。因此,古细菌的20S蛋白酶体仍然是真核生物蛋白酶体组装的重要模型。具体而言,古细菌20S蛋白酶体的重组表达与非变性聚丙烯酰胺凝胶电泳(PAGE)相结合,为蛋白酶体生物发生提供了许多重要见解。在这里,我们讨论一种改进在非变性PAGE之前共表达古细菌蛋白酶体α和β亚基的常用策略的方法。我们证明,尽管共表达方法快速有效,但单独使用共表达方法可能会错过关键的组装中间体。就蛋白酶体而言,共表达可能无法检测到半蛋白酶体,即一种包含一个完整α环和一个完整β环的中间体。然而,这种中间体很容易通过裂解物混合来检测。我们建议将共表达与裂解物混合相结合,产生一种在分析组装方面更全面但仍然劳动强度不大的方法。这种方法可能对其他重组多蛋白复合物的研究有用。

相似文献

2
Assembly of proteasome subunits into non-canonical complexes in vivo.蛋白酶体亚基在体内组装成非经典复合物。
Biochem Biophys Res Commun. 2017 Jan 1;482(1):164-169. doi: 10.1016/j.bbrc.2016.11.024. Epub 2016 Nov 8.
10
Assays for proteasome assembly and maturation.蛋白酶体组装与成熟检测
Methods Mol Biol. 2005;301:243-54. doi: 10.1385/1-59259-895-1:243.

本文引用的文献

1
Panorama of ancient metazoan macromolecular complexes.古代后生动物大分子复合物全景图。
Nature. 2015 Sep 17;525(7569):339-44. doi: 10.1038/nature14877. Epub 2015 Sep 7.
3
Structure, dynamics, assembly, and evolution of protein complexes.蛋白质复合物的结构、动态、组装和进化。
Annu Rev Biochem. 2015;84:551-75. doi: 10.1146/annurev-biochem-060614-034142. Epub 2014 Dec 8.
8
Cooperativity in macromolecular assembly.大分子组装中的协同性。
Nat Chem Biol. 2008 Aug;4(8):458-65. doi: 10.1038/nchembio.102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验