Suppr超能文献

利用化学反应动力学预测最佳抗生素治疗策略。

Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies.

作者信息

Abel Zur Wiesch Pia, Clarelli Fabrizio, Cohen Ted

机构信息

Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America.

Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Oslo, Norway.

出版信息

PLoS Comput Biol. 2017 Jan 6;13(1):e1005321. doi: 10.1371/journal.pcbi.1005321. eCollection 2017 Jan.

Abstract

Identifying optimal dosing of antibiotics has proven challenging-some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood.

摘要

事实证明,确定抗生素的最佳剂量具有挑战性——一些抗生素在高剂量定期给药时最有效,而另一些抗生素在使浓度波动最小化时效果最佳。目前缺乏关于抗生素最佳剂量为何不同的机理解释,这限制了我们预测最佳治疗方案的能力,并导致漫长且成本高昂的实验。我们使用描述细菌生长和细胞内抗生素 - 靶点结合的数学模型,来研究抗生素浓度波动对单个细菌细胞和细菌群体的影响。我们表明,物理化学参数,例如药物跨膜扩散速率和抗生素 - 靶点复合物半衰期,足以解释哪种治疗策略最有效。如果药物 - 靶点复合物迅速解离,抗生素必须持续保持在防止细菌复制的浓度。如果抗生素缓慢穿过细菌细胞膜到达靶点,那么通过增加初始抗生素浓度可能会减少作用起效的延迟。最后,药物 - 靶点缓慢解离以及药物缓慢扩散出细胞会延长抗生素的作用,从而允许减少给药频率。我们的模型可作为合理设计细菌感染治疗方案的工具。它很容易适用于其他生物系统,例如艾滋病毒、疟疾和癌症,在这些系统中,药物浓度的生理波动影响也了解甚少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a74/5257006/493ff4232641/pcbi.1005321.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验