Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany.
Elife. 2021 May 18;10:e64116. doi: 10.7554/eLife.64116.
The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: (i) a single mutation, which provides a large resistance benefit, or (ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling, we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.
抗菌治疗的成功受到耐药性进化的威胁。群体遗传模型是减轻这种威胁的重要工具。然而,大多数此类模型仅考虑通过单个突变步骤来产生耐药性。在这里,我们收集了实验证据表明,药物耐药性的进化遵循两种模式:(i)单个突变,提供了很大的耐药性优势;或(ii)多个突变,每个都赋予了较小的优势,这些优势结合起来产生了高水平的耐药性。然后,我们使用随机建模方法,研究了这两种模式对不同治疗方案下治疗失败和群体多样性的影响。我们发现,如果需要两个以上的突变,耐药性的进化就会受到很大限制,而且这种限制的程度取决于药物类型和药代动力学特征的组合。此外,如果需要多个突变,仅抑制细菌种群的适应性治疗会比旨在根除的积极治疗更能延迟耐药性导致的治疗失败时间。