Manibog K, Yen C F, Sivasankar S
Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States.
Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States.
Methods Enzymol. 2017;582:297-320. doi: 10.1016/bs.mie.2016.08.009. Epub 2016 Nov 11.
Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges.
蛋白质通过发生构象变化并改变其相互作用的动力学来响应机械力。然而,机械力与蛋白质复合物寿命之间的生物物理关系尚未完全明了。在本章中,我们提供了一个逐步的教程,介绍如何使用原子力显微镜(AFM)通过体外和体内单分子力钳测量来表征蛋白质相互作用的力依赖性调节。虽然我们重点关注E-钙黏蛋白(一种关键的细胞间黏附蛋白)的力诱导解离,但这里描述的方法可以很容易地适用于研究其他蛋白质复合物。我们在本章开头简要概述了描述生物分子相互作用的力依赖性动力学的理论模型。接下来,我们介绍在体外测量单个受体-配体键对拉力响应的逐步方法。最后,我们描述量化活细胞表面单个蛋白质复合物机械响应的方法。我们描述了进行此类测量的一般方案, 包括样品制备、AFM力钳测量和数据分析。我们还强调了当前技术中的关键局限性,并讨论了应对这些挑战的解决方案。