Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA.
Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA.
Sci Rep. 2018 Sep 17;8(1):13912. doi: 10.1038/s41598-018-32012-1.
While fluorescence microscopes and atomic force microscopes are widely used to visualize, track, and manipulate single biomolecules, the resolution of these methods is limited by sample drift. To minimize drift, active feedback methods have recently been used to stabilize single molecule microscopes on the sub-nanometer scale. However, these methods require high intensity lasers which limits their application in single molecule fluorescence measurements. Furthermore, these feedback methods do not track user-defined regions of the sample, but rather monitor the relative displacement of an unknown point on a fiducial marker, which limits their use in biological force measurements. To overcome these limitations, we have developed a novel method to image, track and stabilize a sample using low laser intensities. We demonstrate the capabilities of our approach by tracking a user-chosen point on a fiducial marker at 8.6 kHz and stabilizing it with sub-nanometer resolution. We further showcase the application of our method in single molecule fluorescence microscopy by imaging and stabilizing individual fluorescently-tagged streptavidin proteins under biologically relevant conditions. We anticipate that our method can be easily used to improve the resolution of a wide range of single molecule fluorescence microscopy and integrated force-fluorescence applications.
荧光显微镜和原子力显微镜被广泛用于可视化、跟踪和操纵单个生物分子,但这些方法的分辨率受到样品漂移的限制。为了最小化漂移,最近已经使用主动反馈方法将单分子显微镜稳定在亚纳米尺度上。然而,这些方法需要高强度激光,这限制了它们在单分子荧光测量中的应用。此外,这些反馈方法不跟踪样品的用户定义区域,而是监测基准标记上未知点的相对位移,这限制了它们在生物力测量中的应用。为了克服这些限制,我们开发了一种使用低激光强度对样品进行成像、跟踪和稳定的新方法。我们通过以 8.6 kHz 的频率跟踪基准标记上用户选择的点并以亚纳米分辨率稳定它来证明我们方法的能力。我们进一步展示了我们的方法在单分子荧光显微镜中的应用,即在生物相关条件下成像和稳定单个荧光标记的链霉亲和素蛋白。我们预计,我们的方法可以很容易地用于提高各种单分子荧光显微镜和集成力荧光应用的分辨率。