Paszkiewicz Gaël, Gualberto José M, Benamar Abdelilah, Macherel David, Logan David C
IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France.
Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
Plant Cell. 2017 Jan;29(1):109-128. doi: 10.1105/tpc.16.00700. Epub 2017 Jan 6.
Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth.
种子萌发是种子植物通过有性生殖产生后代的一个至关重要的发育转变过程。非休眠干燥胚中的静止细胞首先通过吸水被唤醒,然后通过感知萌发触发因素被唤醒。复苏的组织进入一个萌发程序,该程序需要能量来进行扩展生长。然而,萌发要求胚胎组织发育以支持新幼苗细胞分裂和器官发生等对能量需求更高的过程。因此,线粒体重新激活以提供所需能量是支撑萌发和幼苗存活的关键过程。我们使用实时成像技术,以[具体植物名称未给出]为模型,研究了线粒体生物能量学和动力学的重新激活。通过膜电位的存在可视化的生物能量学重新激活在再水化后立即发生。然而,线粒体动力学的重新激活仅在转移到萌发条件后才发生。线粒体生物能量学的重新激活之后是线粒体群体(细胞内所有线粒体的统称)的显著重组,涉及大量融合和膜生物发生,以形成核周管状网状结构,使先前离散的线粒体DNA类核能够混合。萌发结束时线粒体群体发生碎片化、线粒体数量加倍以及类核在线粒体之间的异质重新分布,从而产生一群适合幼苗生长的线粒体。