Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia.
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia.
Biochim Biophys Acta Biomembr. 2017 Mar;1859(3):493-506. doi: 10.1016/j.bbamem.2017.01.004. Epub 2017 Jan 6.
Voltage-gated Na channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na channel consists of 2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of C,N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 3-helical conformation. Water accessibility of S3 helix, observed by the Mn titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. N relaxation data revealed characteristic pattern of μs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K channels. These results validate structural studies of isolated VSDs of Na channels and show possible pitfalls in application of this 'divide and conquer' approach.
电压门控钠离子通道对于心血管、肌肉和神经系统的功能至关重要。真核生物钠离子通道的α亚基由约 2000 个氨基酸残基组成,包含 24 个跨膜(TM)螺旋,形成五个膜域:四个电压感应(VSD)和一个孔域。结构的复杂性极大地阻碍了全长钠离子通道的重组表达和结构研究。电压门控通道的模块化组织为研究人类骨骼肌 Nav1.4 通道的分离第二电压感应结构域(VSD-II)提供了思路。通过无细胞表达产生了具有不同 N 和 C 末端的几个 VSD-II(~150a.a.,四个 TM 螺旋)变体。膜类似物的筛选表明,在含有磷脂(双脂体、纳米盘)的介质中,VSD-II 样品的稳定性较低,与电中性结构域分子的聚集有关。在 LPPG 胶束中获得了 C、N 标记的 VSD-II 的几乎完整的共振分配。VSD-II 的二级结构与细菌钠离子通道的结构具有相似性。S4 TM 螺旋中第一个和第二个保守 Arg 残基之间的片段可能采用 3 螺旋构象。Mn 滴定观察到 S3 螺旋的水可及性,表明在嵌入胶束的 VSD-II 中形成了充满水的裂隙。N 弛豫数据揭示了在 VSD-II 区域中共享预期的螺旋间接触的μs-ms 时间尺度运动的特征模式。与分离的 K 通道 VSD 相比,VSD-II 在 ps-ns 时间尺度上表现出增强的迁移率。这些结果验证了钠离子通道分离 VSD 的结构研究,并表明在应用这种“分而治之”的方法时可能存在陷阱。