Suppr超能文献

一种对细菌有偏好的奇特绿藻为质体进化提供了线索。

a peculiar prasinophyte with a taste for bacteria sheds light on plastid evolution.

作者信息

Gagat Przemysław, Mackiewicz Paweł

机构信息

Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383 Wrocław, Poland.

出版信息

Symbiosis. 2017;71(1):1-7. doi: 10.1007/s13199-016-0464-1. Epub 2016 Nov 10.

Abstract

is a peculiar green alga that unites in one cell the abilities of photosynthesis and phagocytosis, which makes it a very useful model for the study of the evolution of plastid endosymbiosis. We have pondered over this issue and propose an evolutionary scenario of trophic strategies in eukaryotes, including primary and secondary plastid endosymbioses. is a prototroph, just like the common ancestor of Archaeplastida was, and can synthesize most small organic molecules contrary to other eukaryotic phagotrophs, e.g. some metazoans, amoebozoans, and ciliates, which have not evolved tight endosymbiotic relationships. In order to establish a permanent photosynthetic endosymbiont they do not have to become prototrophs, but have to acquire the genes necessary for plastid retention via horizontal (including endosymbiotic) gene transfer. Such processes occurred successfully in the ancestors of eukaryotes with permanent secondary plastids and thus led to their great diversification. The preservation of phagocytosis in (and some other prasinophytes as well) seems to result from nutrient deficiency in their oligotrophic habitats. This forces them to supplement their diet with phagocytized prey, in contrasts to the thecate amoeba , which also successfully transformed cyanobacteria into permanent organelles. Although endosymbionts were acquired very recently in comparison to primary plastids, has lost the ability to phagocytose, most probably due to the fact that it inhabits nutrient-rich environments, which renders the phagotrophy nonessential.

摘要

是一种独特的绿藻,它在一个细胞中兼具光合作用和吞噬作用的能力,这使其成为研究质体共生进化的非常有用的模型。我们思考了这个问题,并提出了真核生物营养策略的进化情景,包括初级和次级质体共生。就像原始色素体生物的共同祖先一样,是一种自养生物,与其他真核吞噬生物(如一些后生动物、变形虫和纤毛虫)不同,它可以合成大多数小分子有机化合物,这些真核吞噬生物没有进化出紧密的共生关系。为了建立永久的光合共生体,它们不必成为自养生物,但必须通过水平(包括共生)基因转移获得保留质体所需的基因。这样的过程在具有永久次级质体的真核生物祖先中成功发生,从而导致了它们的高度多样化。(以及其他一些绿藻纲植物)中吞噬作用的保留似乎是由于它们贫营养栖息地中的营养缺乏。这迫使它们通过吞噬猎物来补充饮食,这与有壳变形虫不同,有壳变形虫也成功地将蓝细菌转化为永久细胞器。尽管与初级质体相比,获得共生体的时间非常晚,但已经失去了吞噬能力,很可能是因为它生活在营养丰富的环境中,这使得吞噬营养变得不必要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c2/5167767/dc522bdc5426/13199_2016_464_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验