Suppr超能文献

XQ-NLM:通过空间非局部补丁匹配去噪扩散磁共振成像数据

XQ-NLM: Denoising Diffusion MRI Data via Space Non-Local Patch Matching.

作者信息

Chen Geng, Wu Yafeng, Shen Dinggang, Yap Pew-Thian

机构信息

Data Processing Center, Northwestern Polytechnical University, Xi'an, China; Department of Radiology and BRIC, University of North Carolina, Chapel Hill, U.S.A.

Data Processing Center, Northwestern Polytechnical University, Xi'an, China.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9902:587-595. doi: 10.1007/978-3-319-46726-9_68. Epub 2016 Oct 2.

Abstract

Noise is a major issue influencing quantitative analysis in diffusion MRI. The effects of noise can be reduced by repeated acquisitions, but this leads to long acquisition times that can be unrealistic in clinical settings. For this reason, post-acquisition denoising methods have been widely used to improve SNR. Among existing methods, non-local means (NLM) has been shown to produce good image quality with edge preservation. However, currently the application of NLM to diffusion MRI has been mostly focused on the spatial space (i.e., the -space), despite the fact that diffusion data live in a combined space consisting of the -space and the -space (i.e., the space of wavevectors). In this paper, we propose to extend NLM to both -space and -space. We show how patch-matching, as required in NLM, can be performed concurrently in space with the help of azimuthal equidistant projection and rotation invariant features. Extensive experiments on both synthetic and real data confirm that the proposed space NLM (XQ-NLM) outperforms the classic NLM.

摘要

噪声是影响扩散磁共振成像定量分析的一个主要问题。通过重复采集可以降低噪声的影响,但这会导致采集时间过长,在临床环境中可能不切实际。因此,采集后去噪方法已被广泛用于提高信噪比。在现有方法中,非局部均值(NLM)已被证明能在保留边缘的情况下产生良好的图像质量。然而,目前NLM在扩散磁共振成像中的应用大多集中在空间域(即空间),尽管扩散数据存在于由空间和波矢空间组成的联合空间(即波矢空间)中。在本文中,我们提议将NLM扩展到空间和波矢空间。我们展示了如何在方位等距投影和旋转不变特征的帮助下,在波矢空间中同时执行NLM所需的块匹配。在合成数据和真实数据上进行的大量实验证实,所提出的波矢空间NLM(XQ-NLM)优于经典的NLM。

相似文献

1
XQ-NLM: Denoising Diffusion MRI Data via Space Non-Local Patch Matching.XQ-NLM:通过空间非局部补丁匹配去噪扩散磁共振成像数据
Med Image Comput Comput Assist Interv. 2016 Oct;9902:587-595. doi: 10.1007/978-3-319-46726-9_68. Epub 2016 Oct 2.
3
Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space.基于 x-q 空间图框匹配的扩散磁共振数据去噪。
IEEE Trans Med Imaging. 2019 Dec;38(12):2838-2848. doi: 10.1109/TMI.2019.2915629. Epub 2019 May 8.
9
-Space Upsampling Using - Space Regularization.- 使用空间正则化的空间上采样
Med Image Comput Comput Assist Interv. 2017 Sep;10433:620-628. doi: 10.1007/978-3-319-66182-7_71. Epub 2017 Sep 4.
10
Tight Graph Framelets for Sparse Diffusion MRI -Space Representation.用于稀疏扩散磁共振成像 - 空间表示的紧框架小波
Med Image Comput Comput Assist Interv. 2016 Oct;9902:561-569. doi: 10.1007/978-3-319-46726-9_65. Epub 2016 Oct 2.

引用本文的文献

1
Tensor denoising of multidimensional MRI data.多维 MRI 数据的张量去噪。
Magn Reson Med. 2023 Mar;89(3):1160-1172. doi: 10.1002/mrm.29478. Epub 2022 Oct 11.
2
Denoising Diffusion MRI via Graph Total Variance in Spatioangular Domain.基于时空角域图总变分的扩散磁共振去噪。
Comput Math Methods Med. 2021 Dec 7;2021:4645544. doi: 10.1155/2021/4645544. eCollection 2021.
6
Neighborhood Matching for Curved Domains with Application to Denoising in Diffusion MRI.用于曲面区域的邻域匹配及其在扩散磁共振成像去噪中的应用
Med Image Comput Comput Assist Interv. 2017 Sep;10433:629-637. doi: 10.1007/978-3-319-66182-7_72. Epub 2017 Sep 4.
7
-Space Upsampling Using - Space Regularization.- 使用空间正则化的空间上采样
Med Image Comput Comput Assist Interv. 2017 Sep;10433:620-628. doi: 10.1007/978-3-319-66182-7_71. Epub 2017 Sep 4.

本文引用的文献

1
Denoising Magnetic Resonance Images Using Collaborative Non-Local Means.使用协作非局部均值去噪磁共振图像
Neurocomputing (Amst). 2016 Feb 12;177:215-227. doi: 10.1016/j.neucom.2015.11.031.
2
Two-dimensional polar harmonic transforms for invariant image representation.二维极坐标谐波变换用于不变图像表示。
IEEE Trans Pattern Anal Mach Intell. 2010 Jul;32(7):1259-70. doi: 10.1109/TPAMI.2009.119.
4
Impact of Rician adapted Non-Local Means filtering on HARDI.莱斯适应非局部均值滤波对高分辨率扩散成像的影响。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):122-30. doi: 10.1007/978-3-540-85990-1_15.
6
MRI denoising using non-local means.使用非局部均值的磁共振成像去噪
Med Image Anal. 2008 Aug;12(4):514-523. doi: 10.1016/j.media.2008.02.004. Epub 2008 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验