Suppr超能文献

开发仿生牙芽模型。

Developing a biomimetic tooth bud model.

机构信息

Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, USA.

Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA.

出版信息

J Tissue Eng Regen Med. 2017 Dec;11(12):3326-3336. doi: 10.1002/term.2246. Epub 2017 Jan 8.

Abstract

A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

长期目标是为再生医学和牙科应用生物工程、功能齐全的活牙。基于生物学的替代牙齿将避免目前使用的牙种植体的不足。以天然牙齿发育为指导,使用产后猪牙上皮(pDE)、猪牙间充质(pDM)祖细胞和人脐静脉内皮细胞(HUVEC),用明胶甲基丙烯酸酯(GelMA)水凝胶包封,制造了一个模型。之前的出版物已经表明,接种在合成支架上的产后 DE 和 DM 细胞表现出矿化的牙冠,由牙本质和釉质组成。然而,这些牙齿结构很小,并且在支架的孔隙内形成。本研究表明,牙细胞包封的 GelMA 构建体可以支持可预测大小和形状的矿化牙组织形成。单独包封的 pDE 或 pDM 细胞 GelMA 构建体进行了分析,以确定支持 pDE 和 pDM 细胞附着、扩散、代谢活性以及与共接种的内皮细胞(HUVEC)形成新血管的配方。由 3% GelMA 中的 pDE-HUVEC 和 5% GelMA 中的 pDM-HUVEC 组成的 GelMa 构建体支持牙细胞分化和血管矿化牙组织在体内形成。这些研究首次证明了使用 GelMA 水凝胶来支持产后牙祖细胞衍生的矿化和功能血管化组织的形成,其大小和形状是特定的。这些结果介绍了一种新的三维仿生牙芽模型,最终用于人类生物工程替代牙齿。版权所有©2017 约翰威立父子有限公司。

相似文献

1
Developing a biomimetic tooth bud model.开发仿生牙芽模型。
J Tissue Eng Regen Med. 2017 Dec;11(12):3326-3336. doi: 10.1002/term.2246. Epub 2017 Jan 8.
2
Bioengineered post-natal recombinant tooth bud models.生物工程化产后重组牙胚模型
J Tissue Eng Regen Med. 2017 Mar;11(3):658-668. doi: 10.1002/term.1962. Epub 2014 Nov 25.
3
Dental cell sheet biomimetic tooth bud model.牙细胞片仿生牙胚模型
Biomaterials. 2016 Nov;106:167-79. doi: 10.1016/j.biomaterials.2016.08.024. Epub 2016 Aug 17.
5
Decellularized Tooth Bud Scaffolds for Tooth Regeneration.用于牙齿再生的脱细胞牙胚支架
J Dent Res. 2017 May;96(5):516-523. doi: 10.1177/0022034516689082. Epub 2017 Jan 24.

引用本文的文献

3
Bioprinting and biomaterials for dental alveolar tissue regeneration.用于牙槽骨组织再生的生物打印与生物材料
Front Bioeng Biotechnol. 2023 Apr 14;11:991821. doi: 10.3389/fbioe.2023.991821. eCollection 2023.
5
Engineered organoids in oral and maxillofacial regeneration.口腔颌面再生中的工程化类器官
iScience. 2022 Dec 7;26(1):105757. doi: 10.1016/j.isci.2022.105757. eCollection 2023 Jan 20.
6
A Compilation of Study Models for Dental Pulp Regeneration.牙髓再生的研究模型汇编。
Int J Mol Sci. 2022 Nov 18;23(22):14361. doi: 10.3390/ijms232214361.
10
Self-Assembled Hydrogel Microparticle-Based Tooth-Germ Organoids.基于自组装水凝胶微粒的牙胚类器官
Bioengineering (Basel). 2022 May 17;9(5):215. doi: 10.3390/bioengineering9050215.

本文引用的文献

3
Bioengineered post-natal recombinant tooth bud models.生物工程化产后重组牙胚模型
J Tissue Eng Regen Med. 2017 Mar;11(3):658-668. doi: 10.1002/term.1962. Epub 2014 Nov 25.
4
Introduction to cell-hydrogel mechanosensing.细胞-水凝胶机械传感导论。
Interface Focus. 2014 Apr 6;4(2):20130038. doi: 10.1098/rsfs.2013.0038.
6
Molecular and engineering approaches to regenerate and repair teeth in mammals.哺乳动物牙齿再生和修复的分子与工程方法。
Cell Mol Life Sci. 2014 May;71(9):1691-701. doi: 10.1007/s00018-013-1518-7. Epub 2013 Nov 24.
8
How cells sense extracellular matrix stiffness: a material's perspective.细胞如何感知细胞外基质的硬度:从材料的角度来看。
Curr Opin Biotechnol. 2013 Oct;24(5):948-53. doi: 10.1016/j.copbio.2013.03.020. Epub 2013 Apr 20.
10
Engineering the human pluripotent stem cell microenvironment to direct cell fate.工程化人类多能干细胞微环境以指导细胞命运。
Biotechnol Adv. 2013 Nov 15;31(7):1002-19. doi: 10.1016/j.biotechadv.2013.03.002. Epub 2013 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验