Suppr超能文献

使用各向异性金纳米结构组装单层 MoS 进行热电子驱动的氢析出反应

Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS.

机构信息

The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

出版信息

Nanoscale. 2017 Jan 26;9(4):1520-1526. doi: 10.1039/c6nr07740d.

Abstract

Plasmonic nanostructures attracting particular interest in plasmon-induced highly energetic electrons, also known as hot electrons, play a fundamental role in photocatalysis for solar energy conversion. Plasmon-induced hot electron excitation, relaxation, transport, and injection to two-dimensional semiconductors are necessary to clearly understand the efficient plasmon-induced chemical reaction. Herein, we use a plasmonic photocatalyst composed of anisotropic gold nanostructures as the electron donor assembled on two-dimensional molybdenum dichalcogenide, monolayer MoS, as the electron acceptor in order to unveil the plasmon-induced interfacial hot electron transfer for the hydrogen evolution reaction (HER). Single-particle confocal fluorescence microscopy, computational calculation of finite-difference-time-domain (FDTD) simulation, and time-resolved transient absorption measurements revealed that anisotropic gold nanostructures with strong plasmon resonance exhibit interfacial hot electron transfer to monolayer MoS, giving the charge separated state with a long lifetime of 800 ps which is responsible for efficient HER. This is the first example to show the plasmon-induced interfacial hot electron transfer from anisotropic Au nanostructures to two-dimensional materials.

摘要

在等离子体诱导的高能量电子(也称为热电子)中,等离子体纳米结构引起了特别的关注,在太阳能转化的光催化中起着至关重要的作用。为了清楚地理解高效的等离子体诱导化学反应,需要研究等离子体诱导的热电子激发、弛豫、输运和注入到二维半导体中。在此,我们使用由各向异性金纳米结构组成的等离子体光催化剂作为电子供体组装在二维二硫化钼(MoS2)单层上作为电子受体,以揭示用于析氢反应(HER)的等离子体诱导界面热电子转移。单粒子共焦荧光显微镜、有限差分时域(FDTD)模拟的计算以及时间分辨瞬态吸收测量表明,具有强等离子体共振的各向异性金纳米结构表现出与单层 MoS2 的界面热电子转移,产生具有 800 ps 长寿命的电荷分离态,这是高效 HER 的原因。这是首例表明各向异性 Au 纳米结构到二维材料的等离子体诱导界面热电子转移的例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验