Suppr超能文献

纤维素作为惰性支架在等离子体辅助辅酶分子光再生中的应用。

Cellulose as an Inert Scaffold in Plasmon-Assisted Photoregeneration of Cofactor Molecules.

机构信息

Wrocław University of Science and Technology, Advanced Materials Engineering and Modelling Group, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19377-19383. doi: 10.1021/acsami.9b21556. Epub 2020 Apr 16.

Abstract

Plasmonic nanoparticles exhibit excellent light-harvesting properties in the visible spectral range, which makes them a convenient material for the conversion of light into useful chemical fuel. However, the need for using surface ligands to ensure colloidal stability of nanoparticles inhibits their photochemical performance due to the insulating molecular shell hindering the carrier transport. We show that cellulose fibers, abundant in chemical functional groups, can serve as a robust substrate for the immobilization of gold nanorods, thus also providing a facile way to remove the surfactant molecules. The resulting functional composite was implemented in a bioinspired photocatalytic process involving dehydrogenation of sodium formate and simultaneous photoregeneration of cofactor molecules (NADH, nicotinamide adenine dinucleotide) using visible light as an energy source. By systematic screening of experimental parameters, we compare photocatalytic and thermocatalytic properties of the composite and evaluate the role of palladium cocatalyst.

摘要

等离子体纳米粒子在可见光谱范围内表现出优异的光捕获特性,这使得它们成为将光转化为有用化学燃料的理想材料。然而,为了确保纳米粒子的胶体稳定性,需要使用表面配体,这会由于绝缘分子壳阻碍载流子输运,从而抑制其光化学性能。我们表明,富含化学官能团的纤维素纤维可以作为金纳米棒的固定化的坚固基底,从而也提供了一种去除表面活性剂分子的简便方法。所得功能复合材料用于生物启发的光催化过程,涉及甲酸钠的脱氢以及辅酶分子(NADH,烟酰胺腺嘌呤二核苷酸)的同时光再生,使用可见光作为能源。通过对实验参数的系统筛选,我们比较了复合材料的光催化和热催化性能,并评估了钯助催化剂的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1d0/7497628/6166aa9adfe2/am9b21556_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验