Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America.
J Neural Eng. 2018 Dec;15(6):066020. doi: 10.1088/1741-2552/aae12f. Epub 2018 Sep 13.
The effectiveness of deep brain stimulation (DBS) therapy strongly depends on precise surgical targeting of intracranial leads and on clinical optimization of stimulation settings. Recent advances in surgical targeting, multi-electrode designs, and multi-channel independent current-controlled stimulation are poised to enable finer control in modulating pathways within the brain. However, the large stimulation parameter space enabled by these technologies also poses significant challenges for efficiently identifying the most therapeutic DBS setting for a given patient. Here, we present a computational approach for programming directional DBS leads that is based on a non-convex optimization framework for neural pathway targeting.
The algorithm integrates patient-specific pre-operative 7 T MR imaging, post-operative CT scans, and multi-objective particle swarm optimization (MOPSO) methods using dominance based-criteria and incorporating multiple neural pathways simultaneously. The algorithm was evaluated on eight patient-specific models of subthalamic nucleus (STN) DBS to identify electrode configurations and stimulation amplitudes to optimally activate or avoid six clinically relevant pathways: motor territory of STN, non-motor territory of STN, internal capsule, superior cerebellar peduncle, thalamic fasciculus, and hyperdirect pathway.
Across the patient-specific models, single-electrode stimulation showed significant correlations across modeled pathways, particularly for motor and non-motor STN efferents. The MOPSO approach was able to identify multi-electrode configurations that achieved improved targeting of motor STN efferents and hyperdirect pathway afferents than that achieved by any single-electrode monopolar setting at equivalent power levels.
These results suggest that pathway targeting with patient-specific model-based optimization algorithms can efficiently identify non-trivial electrode configurations for enhancing activation of clinically relevant pathways. However, the results also indicate that inter-pathway correlations can limit selectivity for certain pathways even with directional DBS leads.
深部脑刺激(DBS)疗法的有效性强烈依赖于颅内导线的精确手术靶向以及刺激设置的临床优化。手术靶向、多电极设计和多通道独立电流控制刺激的最新进展有望实现对大脑内通路的更精细控制。然而,这些技术所带来的庞大刺激参数空间也对有效确定给定患者最具治疗效果的 DBS 设置带来了重大挑战。在这里,我们提出了一种基于神经通路靶向的非凸优化框架的编程定向 DBS 导线的计算方法。
该算法整合了患者特定的术前 7T MRI 成像、术后 CT 扫描以及使用基于优势标准的多目标粒子群优化(MOPSO)方法,同时纳入了多个神经通路。该算法在 8 个特定于患者的丘脑底核(STN)DBS 模型上进行了评估,以确定电极配置和刺激幅度,以最佳地激活或避免 6 条临床相关通路:STN 的运动区、STN 的非运动区、内囊、上小脑脚、丘脑束和直接通路。
在患者特异性模型中,单电极刺激在建模通路中显示出显著相关性,特别是对于运动和非运动性 STN 传出纤维。MOPSO 方法能够识别多电极配置,与等效功率水平的任何单电极单极设置相比,这些配置能够更好地靶向运动性 STN 传出纤维和直接通路传入纤维。
这些结果表明,基于患者特定模型优化算法的通路靶向可以有效地识别出增强临床相关通路激活的非平凡电极配置。然而,结果还表明,即使使用定向 DBS 导线,通路之间的相关性也会限制某些通路的选择性。