Suppr超能文献

新生缺氧后细胞内钙受体1,4,5-三磷酸肌醇1型在大鼠海马中的功能作用

Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia.

作者信息

Ikebara Juliane Midori, Takada Silvia Honda, Cardoso Débora Sterzeck, Dias Natália Myuki Moralles, de Campos Beatriz Crossiol Vicente, Bretherick Talitha Amanda Sanches, Higa Guilherme Shigueto Vilar, Ferraz Mariana Sacrini Ayres, Kihara Alexandre Hiroaki

机构信息

Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil.

Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil.

出版信息

PLoS One. 2017 Jan 10;12(1):e0169861. doi: 10.1371/journal.pone.0169861. eCollection 2017.

Abstract

Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.

摘要

缺氧是新生儿发病和死亡的最常见原因之一,尤其是在早产儿中,由于患者出现永久性神经后遗症,这构成了一个重要的公共卫生问题。缺氧会引发一系列同时发生的级联反应,最终导致细胞死亡,主要发生在代谢更脆弱的脑区,如海马体。在缺氧导致细胞死亡的过程中,胞质钙起着关键作用。细胞内肌醇1,4,5-三磷酸受体(IP3Rs)是胞质钙水平的重要调节因子,尽管这些受体在新生儿缺氧中的作用完全未知。本研究聚焦于新生大鼠缺氧后海马体中1型肌醇1,4,5-三磷酸受体(IP3R1)的功能作用。定量实时PCR显示,新生大鼠缺氧24小时后IP3R1基因表达下降。我们检测到IP3R1特别在CA1区积累,且这种空间模式在新生大鼠缺氧后没有改变。有趣的是,我们观察到缺氧会触发海马体细胞中IP3R1向细胞核的转位。通过聚类大小分析发现,缺氧会改变IP3R1免疫荧光信号的分布。接下来,我们研究了IP3R1在新生大鼠缺氧引发的神经元细胞死亡中的作用。海马体内注射非特异性IP3R1阻滞剂2-APB明显减少了Fluoro-Jade C和Tunel阳性细胞的数量,表明IP3R1的激活会增加新生大鼠缺氧后的细胞死亡。最后,我们旨在揭示IP3R1在细胞死亡中的机制。我们发现阻断IP3R1并没有降低活化的caspase 3阳性细胞的分布和像素密度,这表明IP3R1在神经元细胞死亡中的参与与经典的caspase介导的凋亡无关。总之,本研究可能为缺氧引发的神经退行性机制研究提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91d3/5225024/fdfb14f8e39c/pone.0169861.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验