School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
Nanoscale. 2017 Jan 26;9(4):1625-1636. doi: 10.1039/c6nr08706j.
The development of a robust, cost-effective, scalable and simple technique that enables the design and construction of well-controlled large area superhydrophobic surface structures which can be easily tuned from lotus-leaf to rose-petal state is essential to enable progress in realising the full applied potential of such surfaces. In this study, we introduce the tuneable carbon nanotubes-based electrohydrodynamic lithography (CNT-EHL) to fabricate unique multiscale structured cones and nanohair-like architectures with various periodicities and dimensions, successfully enabling surface energy minimization. The possibility of contact-less lithography via the CNT-EHL morphology replication combined with the electric field coupling to smaller self-assembled patterns within the film, provides a way for hierarchical structure control spanning many length scales along with tuneable wetting capabilities. By controlling the hierarchy of micro- to nano cones and spikes, these morphologies provide a range of architectures with sufficient roughness for very low wettability, with the highest contact angle achieved of 173° and their properties can be easily switched between lotus-leaf to rose-petal behaviour.
开发一种强大、经济高效、可扩展且简单的技术,能够设计和构建具有良好控制性的大面积超疏水表面结构,使其能够轻松地从荷叶状态调整到玫瑰花瓣状态,这对于实现这种表面的全部实际潜力至关重要。在本研究中,我们引入了基于可调谐碳纳米管的电动力学光刻(CNT-EHL)来制造具有各种周期性和尺寸的独特多尺度结构化圆锥体和纳米毛发状结构,成功实现了表面能最小化。通过 CNT-EHL 形貌复制以及与薄膜内较小自组装图案的电场耦合进行非接触式光刻的可能性,为跨越多个长度尺度的分层结构控制以及可调润湿性能提供了一种方法。通过控制微到纳米圆锥体和尖刺的层次结构,这些形态提供了一系列具有足够粗糙度的结构,具有非常低的润湿性,实现的最高接触角为 173°,并且它们的性质可以轻松地在荷叶到玫瑰花瓣行为之间切换。