Lewis James E M, Winn Joby, Goldup Stephen M
Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Molecules. 2017 Jan 9;22(1):89. doi: 10.3390/molecules22010089.
Despite significant advances in the last three decades towards high yielding syntheses of rotaxanes, the preparation of systems constructed from more than two components remains a challenge. Herein we build upon our previous report of an active template copper-catalyzed azide-alkyne cycloaddition (CuAAC) rotaxane synthesis with a diyne in which, following the formation of the first mechanical bond, the steric bulk of the macrocycle tempers the reactivity of the second alkyne unit. We have now extended this approach to the use of 1,3,5-triethynylbenzene in order to successively prepare [2]-, [3]- and [4]rotaxanes without the need for protecting group chemistry. Whilst the first two iterations proceeded in good yield, the steric shielding that affords this selectivity also significantly reduces the efficacy of the active template (AT)-CuAAC reaction of the third alkyne towards the preparation of [4]rotaxanes, resulting in severely diminished yields.
尽管在过去三十年中轮烷的高产率合成取得了重大进展,但由两个以上组分构建的体系的制备仍然是一项挑战。在此,我们基于之前关于活性模板铜催化的叠氮化物-炔烃环加成(CuAAC)轮烷合成的报告,该合成使用了二炔,其中在形成第一个机械键后,大环的空间位阻调节了第二个炔烃单元的反应性。我们现在已将此方法扩展到使用1,3,5-三乙炔基苯,以便无需保护基团化学即可连续制备[2]-、[3]-和[4]轮烷。虽然前两次迭代的产率良好,但提供这种选择性的空间屏蔽也显著降低了第三个炔烃的活性模板(AT)-CuAAC反应制备[4]轮烷的效率,导致产率严重降低。