Zhao Linlin, Washington M Todd
Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
Genes (Basel). 2017 Jan 10;8(1):24. doi: 10.3390/genes8010024.
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
DNA复制不断受到DNA损伤、非经典DNA结构和难以复制的DNA序列的挑战。拯救停滞的复制叉并确保DNA持续合成的两种主要策略是:(1)模板切换和依赖重组的DNA合成;(2)使用特殊DNA聚合酶在DNA损伤对面进行核苷酸掺入的跨损伤合成(TLS)。前一种途径主要是无错误的,而后一种途径容易出错,是诱变的主要来源。一种公认的跨损伤合成模型涉及复制性DNA聚合酶与一种或多种TLS DNA聚合酶之间的DNA聚合酶切换步骤。对于给定的DNA损伤,控制特殊DNA聚合酶选择和交换的机制尚不清楚。在这篇综述中,总结了关于真核系统中DNA聚合酶选择和切换机制的最新研究。