Gambara Guido, Salanova Michele, Ciciliot Stefano, Furlan Sandra, Gutsmann Martina, Schiffl Gudrun, Ungethuem Ute, Volpe Pompeo, Gunga Hanns-Christian, Blottner Dieter
Center for Space Medicine Berlin, Neuromuscular Group, Charité Universitätsmedizin Berlin, Berlin, Germany.
Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.
PLoS One. 2017 Jan 11;12(1):e0169314. doi: 10.1371/journal.pone.0169314. eCollection 2017.
Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.
微重力暴露以及长期废用是动物和人类骨骼肌萎缩的两个主要原因。抗重力的小腿比目鱼肌是一种参考姿势肌,用于研究废用性适应不良和人类及啮齿动物(大鼠或小鼠)骨骼肌组织可塑性的机制。在此,我们报告了太空飞行小鼠骨骼肌中微重力诱导的全局基因表达变化,并鉴定了在比目鱼肌(主要为慢肌表型)中发现但在趾长伸肌(主要为快肌表型背屈肌,作为比目鱼肌的功能对应物)中未发现的未知废用易感转录本。成年C57Bl/N6雄性小鼠(n = 5)搭乘生物卫星在轨道上飞行30天(2013年BION - M1任务),一组年龄和性别匹配的小鼠被饲养在标准饲养笼中(n = 5),或饲养在作为地面对照的复制飞行栖息地中(n = 5)。与地面对照相比,在太空飞行的比目鱼肌中发现了多达680个差异表达基因,呈现出废用性萎缩迹象(尺寸减小和肌纤维从I型向II型转变),而在趾长伸肌中仅发现72个(仅有24个基因相同)。基因转录本表达的改变与关键生物学过程(收缩机制、钙稳态、肌肉发育、细胞代谢、炎症和氧化应激反应)相匹配。一些转录本(Fzd9、Casq2、Kcnma1、Ppara、Myf6)通过定量实时PCR(qRT - PCR)进一步验证。除了之前关于其他腿部肌肉类型的报道外,我们首次提出了一套完整的小鼠比目鱼肌微重力易感基因转录本,作为有前景的新生物标志物或靶点,用于优化物理对抗措施和康复方案,以克服不同临床环境、康复和太空飞行中的废用性萎缩状况。