Suppr超能文献

人类基因组中的非编码功能丧失变异

Non-Coding Loss-of-Function Variation in Human Genomes.

作者信息

Zappala Zachary, Montgomery Stephen B

机构信息

Department of Genetics, Stanford University, Stanford, Calif., USA.

出版信息

Hum Hered. 2016;81(2):78-87. doi: 10.1159/000447453. Epub 2017 Jan 12.

Abstract

Whole-genome and exome sequencing in human populations has revealed the tolerance of each gene for loss-of-function variation. By understanding this tolerance, it has become increasingly possible to identify genes that would make safe therapeutic targets and to identify rare genetic risk factors and phenotypes at the scale of individual genomes. To date, the vast majority of surveyed loss-of-function variants are in protein-coding regions of the genome mainly due to the focus on these regions by exome-based sequencing projects and their relative ease of interpretability. As whole-genome sequencing becomes more prevalent, new strategies will be required to uncover impactful variation in non-coding regions of the genome where the architecture of genome function is more complex. In this review, we investigate recent studies of loss-of-function variation and emerging approaches for interpreting whole-genome sequencing data to identify rare and impactful non-coding loss-of-function variants.

摘要

对人类群体进行的全基因组和外显子组测序揭示了每个基因对功能丧失变异的耐受性。通过了解这种耐受性,越来越有可能识别出可作为安全治疗靶点的基因,并在个体基因组层面识别罕见的遗传风险因素和表型。迄今为止,绝大多数被调查的功能丧失变异位于基因组的蛋白质编码区域,这主要是由于基于外显子组的测序项目聚焦于这些区域,且这些区域相对易于解读。随着全基因组测序变得更加普遍,将需要新的策略来揭示基因组非编码区域中有影响的变异,而基因组功能的结构在这些区域更为复杂。在这篇综述中,我们研究了功能丧失变异的近期研究以及解释全基因组测序数据以识别罕见且有影响的非编码功能丧失变异的新兴方法。

相似文献

1
Non-Coding Loss-of-Function Variation in Human Genomes.人类基因组中的非编码功能丧失变异
Hum Hered. 2016;81(2):78-87. doi: 10.1159/000447453. Epub 2017 Jan 12.
10
Genetic variation in an individual human exome.个体人类外显子组中的基因变异。
PLoS Genet. 2008 Aug 15;4(8):e1000160. doi: 10.1371/journal.pgen.1000160.

引用本文的文献

4
Role of non-coding variants in cardiovascular disease.非编码变异在心血管疾病中的作用。
J Cell Mol Med. 2023 Jun;27(12):1621-1636. doi: 10.1111/jcmm.17762. Epub 2023 May 15.
5
Aberrant splicing prediction across human tissues.跨人类组织的异常剪接预测
Nat Genet. 2023 May;55(5):861-870. doi: 10.1038/s41588-023-01373-3. Epub 2023 May 4.
7
Insights into rheumatic diseases from next-generation sequencing.从下一代测序技术看风湿性疾病。
Nat Rev Rheumatol. 2019 Jun;15(6):327-339. doi: 10.1038/s41584-019-0217-7.

本文引用的文献

8
RNAseq analysis for the diagnosis of muscular dystrophy.RNA 测序分析在肌肉疾病诊断中的应用。
Ann Clin Transl Neurol. 2015 Dec 8;3(1):55-60. doi: 10.1002/acn3.267. eCollection 2016 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验