Suppr超能文献

从结构到活动:利用中心度测量预测神经元活动。

From Structure to Activity: Using Centrality Measures to Predict Neuronal Activity.

机构信息

1 Centre for Robotic and Neural Systems, University of Plymouth, Drake Circus, Plymouth PL48AA, UK.

出版信息

Int J Neural Syst. 2018 Mar;28(2):1750013. doi: 10.1142/S0129065717500137. Epub 2016 Nov 16.

Abstract

It is clear that the topological structure of a neural network somehow determines the activity of the neurons within it. In the present work, we ask to what extent it is possible to examine the structural features of a network and learn something about its activity? Specifically, we consider how the centrality (the importance of a node in a network) of a neuron correlates with its firing rate. To investigate, we apply an array of centrality measures, including In-Degree, Closeness, Betweenness, Eigenvector, Katz, PageRank, Hyperlink-Induced Topic Search (HITS) and NeuronRank to Leaky-Integrate and Fire neural networks with different connectivity schemes. We find that Katz centrality is the best predictor of firing rate given the network structure, with almost perfect correlation in all cases studied, which include purely excitatory and excitatory-inhibitory networks, with either homogeneous connections or a small-world structure. We identify the properties of a network which will cause this correlation to hold. We argue that the reason Katz centrality correlates so highly with neuronal activity compared to other centrality measures is because it nicely captures disinhibition in neural networks. In addition, we argue that these theoretical findings are applicable to neuroscientists who apply centrality measures to functional brain networks, as well as offer a neurophysiological justification to high level cognitive models which use certain centrality measures.

摘要

很明显,神经网络的拓扑结构以某种方式决定了其中神经元的活动。在目前的工作中,我们要问的是,在多大程度上可以检查网络的结构特征并了解其活动?具体来说,我们考虑神经元的中心度(网络中一个节点的重要性)与其发放率之间有何关联。为了进行研究,我们将一系列中心度度量应用于具有不同连接方案的 Leaky-Integrate and Fire 神经网络,包括入度、接近度、介数、特征向量、Katz、PageRank、超链接诱发主题搜索(HITS)和神经元排名。我们发现,Katz 中心度是给定网络结构时对发放率的最佳预测指标,在所有研究的情况下都具有几乎完美的相关性,其中包括纯兴奋性和兴奋性抑制性网络,具有同质连接或小世界结构。我们确定了导致这种相关性的网络特性。我们认为,与其他中心度度量相比,Katz 中心度与神经元活动高度相关的原因是它很好地捕捉了神经网络中的去抑制作用。此外,我们认为这些理论发现适用于将中心度度量应用于功能脑网络的神经科学家,以及为使用某些中心度度量的高级认知模型提供神经生理学依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验