Suppr超能文献

颅/脑接口中经颅通道对高频经颅直流电刺激的影响:一项计算研究。

The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study.

机构信息

Gwangju Institute of Science &Technology, School of Electrical Engineering and Computer Science, Gwangju, 61005, South Korea.

Gwangju Institute of Science &Technology, Department of Biomedical Science and Engineering, Gwangju, 61005, South Korea.

出版信息

Sci Rep. 2017 Jan 13;7:40612. doi: 10.1038/srep40612.

Abstract

A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment.

摘要

颅外通道是颅骨和大脑之间的接口;它由生物相容性和高导电性材料组成,有助于将经颅直流电刺激(tDCS)产生的电流传导到目标区域。然而,它只是在概念上被提出,并没有对其疗效进行具体研究。在这项工作中,我们对具有高清晰度 tDCS 的这种概念性颅外模型进行了计算研究,诱导聚焦神经调节,以确定包含颅外通道是否能有效发挥作用。为此,我们构建了一个解剖学上逼真的头部模型和分区金字塔神经元模型。我们通过细胞外刺激分析了膜极化,发现与没有颅外通道的传统高清晰度 tDCS 相比,包含颅外通道可使目标区域的极化程度增加 11 倍。此外,即使刺激电极从目标区域移动约 5 毫米,颅外通道的刺激效果仍能持续约 80%。我们研究了颅外通道的疗效,发现可以实现大大提高的刺激强度和聚焦性。因此,这些通道的使用可能有望用于临床治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02e/5233984/e43099923162/srep40612-f1.jpg

相似文献

3
Effects of electrode displacement in high-definition transcranial direct current stimulation: A computational study.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4618-4621. doi: 10.1109/EMBC.2016.7591756.
5
Impact of Electrode Number on the Performance of High-Definition Transcranial Direct Current Stimulation (HD-tDCS).
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4182-4185. doi: 10.1109/EMBC.2018.8513379.
6
Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
Phys Med Biol. 2016 Jun 21;61(12):4506-21. doi: 10.1088/0031-9155/61/12/4506. Epub 2016 May 25.
7
Stimulation Effect of Inter-subject Variability in tDCS-Multi-scale Modeling Study.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3092-3095. doi: 10.1109/EMBC.2018.8513056.
8
An Operational Approach for Optimizing Transcranial Direct Current Stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340048.

引用本文的文献

本文引用的文献

1
A multi-scale computational model of the effects of TMS on motor cortex.
F1000Res. 2016 Aug 10;5:1945. doi: 10.12688/f1000research.9277.3. eCollection 2016.
3
Validation of Computational Studies for Electrical Brain Stimulation With Phantom Head Experiments.
Brain Stimul. 2015 Sep-Oct;8(5):914-25. doi: 10.1016/j.brs.2015.06.009. Epub 2015 Jun 24.
4
5
Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation.
J Neural Eng. 2015 Aug;12(4):046014. doi: 10.1088/1741-2560/12/4/046014. Epub 2015 Jun 8.
9
The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation.
J Neural Eng. 2014 Jun;11(3):036002. doi: 10.1088/1741-2560/11/3/036002. Epub 2014 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验