Nadell Carey D, Ricaurte Deirdre, Yan Jing, Drescher Knut, Bassler Bonnie L
Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Department of Molecular Biology, Princeton University, Princeton, United States.
Elife. 2017 Jan 13;6:e21855. doi: 10.7554/eLife.21855.
Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.
细菌通常生活在生物膜中,生物膜是由分泌的细胞外基质包围的微生物群落。在此,我们证明流体动力流和基质组织相互作用,以塑造生物膜中的竞争动态。在简单流动条件下的平面微流控装置中,无论初始频率如何,与基质突变体竞争时,野生型细胞的相对丰度总是会增加。相比之下,在具有复杂、不规则流动剖面的微环境中(这在自然环境中很常见),野生型产基质菌株和同基因不产基质菌株可以共存。这一结果源于野生型基质产生菌对流动的局部阻碍,这会产生近零剪切区域,使基质突变体能够在局部积累。我们的研究结果将基质产生的进化稳定性与周围环境的流体动力学和空间结构联系起来,为自然环境中细菌间观察到的生物膜基质分泌差异提供了一种潜在解释。