Suppr超能文献

利用共刺激TNF受体进行癌症免疫治疗:当前方法与未来机遇

Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities.

作者信息

Waight Jeremy D, Gombos Randi B, Wilson Nicholas S

出版信息

Hum Antibodies. 2017;25(3-4):87-109. doi: 10.3233/HAB-160308.

Abstract

Co-stimulatory tumor necrosis factor receptors (TNFRs) can sculpt the responsiveness of T cells recognizing tumor-associated antigens. For this reason, agonist antibodies targeting CD137, CD357, CD134 and CD27 have received considerable attention for their therapeutic utility in enhancing anti-tumor immune responses, particularly in combination with other immuno-modulatory antibodies targeting co-inhibitory pathways in T cells. The design of therapeutic antibodies that optimally engage and activate co-stimulatory TNFRs presents an important challenge of how to promote effective anti-tumor immunity while avoiding serious immune-related adverse events. Here we review our current understanding of the expression, signaling and structural features of CD137, CD357, CD134 and CD27, and how this may inform the design of pharmacologically active immuno-modulatory antibodies targeting these receptors. This includes the integration of our emerging knowledge of the role of Fcγ receptors (FcγRs) in facilitating antibody-mediated receptor clustering and forward signaling, as well as promoting immune effector cell-mediated activities. Finally, we bring our current preclinical and clinical knowledge of co-stimulatory TNFR antibodies into the context of opportunities for next generation molecules with improved pharmacologic properties.

摘要

共刺激肿瘤坏死因子受体(TNFRs)能够塑造识别肿瘤相关抗原的T细胞的反应性。因此,靶向CD137、CD357、CD134和CD27的激动剂抗体因其在增强抗肿瘤免疫反应中的治疗效用而受到广泛关注,尤其是与其他靶向T细胞共抑制途径的免疫调节抗体联合使用时。设计能够最佳结合并激活共刺激TNFRs的治疗性抗体面临着一个重要挑战,即如何在避免严重免疫相关不良事件的同时促进有效的抗肿瘤免疫。在此,我们综述了目前对CD137、CD357、CD134和CD27的表达、信号传导和结构特征的理解,以及这如何为靶向这些受体的具有药理活性的免疫调节抗体的设计提供参考。这包括整合我们对Fcγ受体(FcγRs)在促进抗体介导的受体聚集和正向信号传导以及促进免疫效应细胞介导的活性方面作用的新认识。最后,我们将目前关于共刺激TNFR抗体的临床前和临床知识置于具有改进药理特性的下一代分子的机会背景下进行探讨。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验