Suppr超能文献

矩阵压缩感知的相图

Phase diagram of matrix compressed sensing.

作者信息

Schülke Christophe, Schniter Philip, Zdeborová Lenka

机构信息

Laboratoire de Physique Statistique, CNRS, PSL Universités et Ecole Normale Supérieure, 75005, Paris, France and Institut de Physique Théorique, CNRS, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.

Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Phys Rev E. 2016 Dec;94(6-1):062136. doi: 10.1103/PhysRevE.94.062136. Epub 2016 Dec 27.

Abstract

In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016)1932-455310.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

摘要

在矩阵压缩感知问题中,我们旨在从少量有噪声的线性测量中恢复一个低秩矩阵。在本论文中,我们分析了一种贝叶斯最优推理过程对于一个模型的渐近性能,该模型中待恢复的矩阵是随机矩阵的乘积。我们使用复制方法得到的结果描述了参数化双线性广义近似消息传递(P-BiG-AMP)算法的状态演化,该算法最近由J. T. 帕克和P. 施尼特在[《IEEE信号处理汇刊精选》10, 795 (2016)1932 - 455310.1109/JSTSP.2016.2539123]中提出。我们展示了两种不同类型的相变的存在及其对问题可解性的影响,并将我们理论分析的结果与P-BiG-AMP达到的数值性能进行比较。值得注意的是,矩阵压缩感知的渐近复制方程与一个相关但形式不同的矩阵分解问题的方程相同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验