Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.
Phys Rev E. 2016 Dec;94(6-1):062412. doi: 10.1103/PhysRevE.94.062412. Epub 2016 Dec 27.
In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.
本文研究了在平面线性流中单个兔红细胞(RBC)的体外动力学,作为剪切应力 σ 和外部流体动力粘度 η_o 的函数。线性流是对以前包括 RBC 在剪切流中动力学的软物体的研究的推广,并在微流控四辊轧机装置的实验中实现。我们验证了 RBC 的稳定取向动力学在实验中是在剪切平面内的取向,并且 RBC 的动力学由观察到的三个 RBC 动力学状态来表征,即在单个 RBC 上的翻滚(TU)、中间(INT)和摆动(SW)[或坦克行走(TT)]。这些研究的主要结果如下。(i)我们完全描述了 RBC 的动力学状态,并在 RBC 在平面线性流中的剪切平面内取向的情况下重建了它们的相图,发现它与在剪切流中对人 RBC 进行的早期实验中获得的相图非常吻合。(ii)TU-TT(SW)转变的临界剪切应力 σ_c 的值令人惊讶地与早期实验中发现的值一致,尽管在 SW 和 INT 状态下 RBC 形状变形的程度有很大差异。(iii)我们描述了 INT 状态,它是静止的,具有强烈的 RBC 形状变形,并在广泛的剪切应力范围内观察到。我们认为,我们的观察结果对最近的数值模拟的主要主张提出了质疑,即只有 RBC 球形无应力形状才能解释早期的实验数据。最后,我们建议 θ 和形状变形参数 D 对 σ 的幅度依赖性可以用作确定 RBC 无应力形状的定量标准。