Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts.
Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts.
Biophys J. 2023 Apr 18;122(8):1517-1525. doi: 10.1016/j.bpj.2023.03.019. Epub 2023 Mar 16.
The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.
红细胞的无应力状态(SFS)是校准计算模型的基本参考配置,但目前尚不清楚。目前的实验方法无法在不影响细胞力学特性的情况下测量 SFS,而计算假设则是有争议的讨论主题。在这里,我们引入了红细胞 SFS 形状和粘弹性特性的基于数据的估计方法。我们使用单细胞实验的数据,其中包括拉伸细胞的平衡形状测量和初始拉伸 RBC 的弛豫时间。分层贝叶斯模型可以解释这些实验和数据的异质性。我们首次量化了 RBC 的 SFS,并利用它引入了一种可转移的 RBC(t-RBC)模型。在所提出模型的推断过程中,可以对未观察到的实验条件进行预测,包括在剪切流中滚转和坦克式运动细胞之间的转变的临界应力,这表明了该模型的有效性。我们的研究结果表明,所提出的 t-RBC 模型可以以前所未有的准确性和量化不确定性来预测血流。