Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
IMAG, University of Montpellier, CNRS, Montpellier, France.
Phys Rev Lett. 2018 Sep 14;121(11):118103. doi: 10.1103/PhysRevLett.121.118103.
A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci. U.S.A. 113, 13289 (2016)PNASA60027-842410.1073/pnas.1608074113] has demonstrated that RBCs first tumble, then roll, transit to a rolling and tumbling stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the viscosity contrast between cytosol and blood plasma is large enough. Using two different simulation techniques, we construct a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate and viscosity contrast, which is also supported by microfluidic experiments. Furthermore, we illustrate the importance of RBC shear elasticity for its dynamics in flow and show that two different kinds of membrane buckling trigger the transition between subsequent RBC states.
最近一项关于红细胞(RBC)在切变流中的研究[Lanotte 等人,美国国家科学院院刊 113,13289(2016)PNASA60027-842410.1073/pnas.1608074113]表明,当细胞溶胶和血浆之间的粘度对比度足够大时,RBC 首先会翻滚,然后滚动,过渡到滚动和翻滚的口形细胞,最后随着剪切率的增加获得多叶形状。使用两种不同的模拟技术,我们构建了 RBC 在剪切流中的形状和动力学状态图,作为剪切率和粘度对比度的函数,这也得到了微流控实验的支持。此外,我们说明了 RBC 剪切弹性对其在流动中动力学的重要性,并表明两种不同类型的膜屈曲触发了后续 RBC 状态之间的转变。