Suppr超能文献

反射模式动态散斑场干涉显微镜中深度切片效应的建模

Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy.

作者信息

Zhou Renjie, Jin Di, Hosseini Poorya, Singh Vijay Raj, Kim Yang-Hyo, Kuang Cuifang, Dasari Ramachandra R, Yaqoob Zahid, So Peter T C

出版信息

Opt Express. 2017 Jan 9;25(1):130-143. doi: 10.1364/OE.25.000130.

Abstract

Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues.

摘要

与大多数光学相干显微镜(OCM)系统不同,动态散斑场干涉显微镜(DSIM)通过空间相干选通效应实现深度切片。在高数值孔径(NA)散斑场照明下,我们之前的实验表明,反射模式DSIM的深度分辨率小于1μm,而在结构照明下,其分辨率是衍射极限分辨率的两倍。然而,目前还没有一个物理模型能够严格描述散斑成像过程,特别是解释在高照明和成像NA设置下DSIM中的切片效应。在本文中,我们基于衍射层析成像理论和散斑统计建立了这样一个模型。利用该模型,我们计算了系统响应函数,该函数用于进一步获得反射模式DSIM中的深度分辨率极限。理论计算的深度分辨率极限与实验结果吻合良好。我们设想,我们的物理模型不仅将有助于理解DSIM中的成像过程,还将有助于更好地设计此类系统,用于生物细胞和组织中的深度分辨测量。

相似文献

2
Depth-resolved speckle-correlations imaging through scattering layers via coherence gating.
Opt Lett. 2018 Nov 15;43(22):5528-5531. doi: 10.1364/OL.43.005528.
3
Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
Opt Express. 2017 Nov 27;25(24):30807-30819. doi: 10.1364/OE.25.030807.
4
Dynamic speckle illumination wide-field reflection phase microscopy.
Opt Lett. 2014 Oct 15;39(20):6062-5. doi: 10.1364/OL.39.006062.
5
Concepts for structured illumination microscopy with extended axial resolution through mirrored illumination.
Biomed Opt Express. 2020 Mar 20;11(4):2098-2108. doi: 10.1364/BOE.382398. eCollection 2020 Apr 1.
6
Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy.
J Opt Soc Am A Opt Image Sci Vis. 2007 Sep;24(9):2527-42. doi: 10.1364/josaa.24.002527.
7
Imaging interferometric microscopy.
Opt Lett. 2003 Aug 15;28(16):1424-6. doi: 10.1364/ol.28.001424.
8
Terahertz interferometric synthetic aperture tomography for confocal imaging systems.
Opt Lett. 2012 Apr 15;37(8):1316-8. doi: 10.1364/OL.37.001316.
9
Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination.
Opt Express. 2019 Mar 4;27(5):7498-7512. doi: 10.1364/OE.27.007498.
10
Imaging interferometric microscopy-approaching the linear systems limits of optical resolution.
Opt Express. 2007 May 28;15(11):6651-63. doi: 10.1364/oe.15.006651.

引用本文的文献

1
Dynamic speckle illumination wide-field fluorescence microscopy with actively optical manipulation of rotational angles.
Biomed Opt Express. 2024 Feb 12;15(3):1585-1594. doi: 10.1364/BOE.517556. eCollection 2024 Mar 1.
2
In vivo visualization of butterfly scale cell morphogenesis in .
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2112009118.
3
Inverse scattering for reflection intensity phase microscopy.
Biomed Opt Express. 2020 Jan 14;11(2):911-926. doi: 10.1364/BOE.380845. eCollection 2020 Feb 1.
4
Reflection phase microscopy using spatio-temporal coherence of light.
Optica. 2018 Nov;5(11):1468-1473. doi: 10.1364/OPTICA.5.001468. Epub 2018 Nov 15.
5
Tomographic phase microscopy: principles and applications in bioimaging [Invited].
J Opt Soc Am B. 2017;34(5):B64-B77. doi: 10.1364/josab.34.000b64.

本文引用的文献

1
Statistical dispersion relation for spatially broadband fields.
Opt Lett. 2016 Jun 1;41(11):2490-2. doi: 10.1364/OL.41.002490.
2
Pushing phase and amplitude sensitivity limits in interferometric microscopy.
Opt Lett. 2016 Apr 1;41(7):1656-9. doi: 10.1364/OL.41.001656.
3
Computational high-resolution optical imaging of the living human retina.
Nat Photonics. 2015;9:440-443. doi: 10.1038/NPHOTON.2015.102.
4
Interferometric synthetic aperture microscopy.
Nat Phys. 2007 Feb 1;3(2):129-134. doi: 10.1038/nphys514.
5
Dynamic speckle illumination wide-field reflection phase microscopy.
Opt Lett. 2014 Oct 15;39(20):6062-5. doi: 10.1364/OL.39.006062.
6
Inverse scattering solutions using low-coherence light.
Opt Lett. 2014 Aug 1;39(15):4494-7. doi: 10.1364/OL.39.004494.
7
Full-field interferometric confocal microscopy using a VCSEL array.
Opt Lett. 2014 Aug 1;39(15):4446-9. doi: 10.1364/OL.39.004446.
8
Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy.
PLoS One. 2012;7(11):e49502. doi: 10.1371/journal.pone.0049502. Epub 2012 Nov 16.
9
Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination.
Opt Lett. 2011 Jul 1;36(13):2465-7. doi: 10.1364/OL.36.002465.
10
Optical heterodyne profilometry.
Appl Opt. 1981 Feb 15;20(4):610-8. doi: 10.1364/AO.20.000610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验