Zhou Renjie, Jin Di, Hosseini Poorya, Singh Vijay Raj, Kim Yang-Hyo, Kuang Cuifang, Dasari Ramachandra R, Yaqoob Zahid, So Peter T C
Opt Express. 2017 Jan 9;25(1):130-143. doi: 10.1364/OE.25.000130.
Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues.
与大多数光学相干显微镜(OCM)系统不同,动态散斑场干涉显微镜(DSIM)通过空间相干选通效应实现深度切片。在高数值孔径(NA)散斑场照明下,我们之前的实验表明,反射模式DSIM的深度分辨率小于1μm,而在结构照明下,其分辨率是衍射极限分辨率的两倍。然而,目前还没有一个物理模型能够严格描述散斑成像过程,特别是解释在高照明和成像NA设置下DSIM中的切片效应。在本文中,我们基于衍射层析成像理论和散斑统计建立了这样一个模型。利用该模型,我们计算了系统响应函数,该函数用于进一步获得反射模式DSIM中的深度分辨率极限。理论计算的深度分辨率极限与实验结果吻合良好。我们设想,我们的物理模型不仅将有助于理解DSIM中的成像过程,还将有助于更好地设计此类系统,用于生物细胞和组织中的深度分辨测量。