Suppr超能文献

近场傅里叶叠层成像术:通过散斑照明实现超分辨率相位恢复

Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination.

作者信息

Zhang He, Jiang Shaowei, Liao Jun, Deng Junjing, Liu Jian, Zhang Yongbing, Zheng Guoan

出版信息

Opt Express. 2019 Mar 4;27(5):7498-7512. doi: 10.1364/OE.27.007498.

Abstract

High spatial resolution is the goal of many imaging systems. While designing a high-resolution lens with diffraction-limited performance over a large field of view remains a difficult task, creating a complex speckle pattern with wavelength-limited spatial features is easily accomplished with a simple random diffuser. With this observation and the concept of near-field ptychography, we report a new imaging modality, termed near-field Fourier ptychography, to address high-resolution imaging challenges in both microscopic and macroscopic imaging settings. 'Near-field' refers to placing the object at a short defocus distance with a large Fresnel number. We project a speckle pattern with fine spatial features on the object instead of directly resolving the spatial features via a high-resolution lens. We then translate the object (or speckle) to different positions and acquire the corresponding images by using a low-resolution lens. A ptychographic phase retrieval process is used to recover the complex object, the unknown speckle pattern, and the coherent transfer function at the same time. In a microscopic imaging setup, we use a 0.12 numerical aperture (NA) lens to achieve an NA of 0.85 in the reconstruction process. In a macroscale photographic imaging setup, we achieve ~7-fold resolution gain by using a photographic lens. The collection optics do not determine the final achievable resolution; rather, the speckle pattern's feature size does. This is similar to our recent demonstration in fluorescence imaging settings (Guo et al., Biomed. Opt. Express, 9(1), 2018). The reported imaging modality can be employed in light, coherent X-ray, and transmission electron imaging systems to increase resolution and provide quantitative absorption and object phase contrast.

摘要

高空间分辨率是许多成像系统的目标。虽然设计一个在大视场上具有衍射极限性能的高分辨率镜头仍然是一项艰巨的任务,但使用简单的随机漫射器就能轻松创建具有波长限制空间特征的复杂散斑图案。基于这一观察结果以及近场叠层成像术的概念,我们报告了一种新的成像模式,称为近场傅里叶叠层成像术,以应对微观和宏观成像环境中的高分辨率成像挑战。“近场”是指将物体放置在具有大菲涅耳数的短离焦距离处。我们将具有精细空间特征的散斑图案投射到物体上,而不是通过高分辨率镜头直接分辨空间特征。然后,我们将物体(或散斑)平移到不同位置,并使用低分辨率镜头获取相应图像。使用叠层成像相位恢复过程同时恢复复杂物体、未知散斑图案和相干传递函数。在微观成像设置中,我们使用数值孔径(NA)为0.12的镜头在重建过程中实现0.85的NA。在宏观摄影成像设置中,我们使用摄影镜头实现了约7倍的分辨率提升。收集光学器件并不决定最终可实现 的分辨率;相反,散斑图案的特征尺寸决定了分辨率。这与我们最近在荧光成像设置中的演示类似(Guo等人,《生物医学光学快报》,9(1),2018)。所报道的成像模式可用于光学、相干X射线和透射电子成像系统,以提高分辨率并提供定量吸收和物体相位对比度。

相似文献

引用本文的文献

1
Relay-projection microscopic telescopy.中继投影显微望远镜
Light Sci Appl. 2025 Mar 7;14(1):117. doi: 10.1038/s41377-025-01800-6.

本文引用的文献

2
X-ray Fourier ptychography.X射线傅里叶叠层成像术
Sci Adv. 2019 Feb 1;5(2):eaav0282. doi: 10.1126/sciadv.aav0282. eCollection 2019 Feb.
3
Near-field ptychographic microscope for quantitative phase imaging.
Opt Express. 2018 Sep 17;26(19):25471-25480. doi: 10.1364/OE.26.025471.
8
Structured illumination microscopy with unknown patterns and a statistical prior.具有未知图案和统计先验的结构照明显微镜术
Biomed Opt Express. 2017 Jan 9;8(2):695-711. doi: 10.1364/BOE.8.000695. eCollection 2017 Feb 1.
9
Wide-field Fourier ptychographic microscopy using laser illumination source.使用激光照明源的宽场傅里叶叠层显微镜术
Biomed Opt Express. 2016 Oct 31;7(11):4787-4802. doi: 10.1364/BOE.7.004787. eCollection 2016 Nov 1.
10
Deconvolution methods for structured illumination microscopy.用于结构光照明显微镜的去卷积方法。
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):B12-20. doi: 10.1364/JOSAA.33.000B12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验