Xie Wenjun, Nielsen Mads Eggert, Pedersen Carsten, Thordal-Christensen Hans
Plant Defence Genetics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark.
PLoS One. 2017 Jan 13;12(1):e0170118. doi: 10.1371/journal.pone.0170118. eCollection 2017.
To understand the function of membrane proteins, it is imperative to know their topology. For such studies, a split green fluorescent protein (GFP) method is useful. GFP is barrel-shaped, consisting of 11 β-sheets. When the first ten β-sheets (GFP1-10) and the 11th β-sheet (GFP11) are expressed from separate genes they will self-assembly and reconstitute a fluorescent GFP protein. However, this will only occur when the two domains co-localize in the same cellular compartment. We have developed an easy-to-use Gateway vector set for determining on which side of the membrane the N- and C-termini are located. Two vectors were designed for making N- and C-terminal fusions between the membrane proteins-of-interest and GFP11, while another three plasmids were designed to express GFP1-10 in either the cytosol, the endoplasmic reticulum (ER) lumen or the apoplast. We tested functionality of the system by applying the vector set for the transmembrane domain, CNXTM, of the ER membrane protein, calnexin, after transient expression in Nicotiana benthamiana leaves. We observed GFP signal from the ER when we reciprocally co-expressed GFP11-CNXTM with GFP1-10-HDEL and CNXTM-GFP with cytosolic GFP1-10. The opposite combinations did not result in GFP signal emission. This test using the calnexin ER-membrane domain demonstrated its C-terminus to be in the cytosol and its N-terminus in the ER lumen. This result confirmed the known topology of calnexin, and we therefore consider this split-GFP system highly useful for ER membrane topology studies. Furthermore, the vector set provided is useful for detecting the topology of proteins on other membranes in the cell, which we confirmed for a plasma membrane syntaxin. The set of five Ti-plasmids are easily and efficiently used for Gateway cloning and transient transformation of N. benthamiana leaves.
为了解膜蛋白的功能,必须了解其拓扑结构。对于此类研究,分裂型绿色荧光蛋白(GFP)方法很有用。GFP呈桶状,由11个β折叠组成。当前十 个β折叠(GFP1 - 10)和第11个β折叠(GFP11)从不同基因表达时,它们会自我组装并重构出有荧光的GFP蛋白。然而,这仅在两个结构域共定位于同一细胞区室时才会发生。我们开发了一套易于使用的Gateway载体,用于确定膜蛋白的N端和C端位于膜的哪一侧。设计了两个载体,用于在感兴趣的膜蛋白与GFP11之间进行N端和C端融合,另外三个质粒则设计用于在细胞质、内质网(ER)腔或质外体中表达GFP1 - 10。我们通过在本氏烟草叶片中瞬时表达后,将该载体用于内质网膜蛋白钙连蛋白的跨膜结构域CNXTM,测试了该系统的功能。当我们将GFP11 - CNXTM与GFP1 - 10 - HDEL相互共表达以及将CNXTM - GFP与细胞质中的GFP1 - 10共表达时,我们在内质网中观察到了GFP信号。相反的组合未产生GFP信号发射。使用钙连蛋白内质网膜结构域的这项测试表明其C端位于细胞质中,N端位于内质网腔中。这一结果证实了钙连蛋白已知的拓扑结构,因此我们认为这种分裂型GFP系统对于内质网拓扑结构研究非常有用。此外,所提供的载体集对于检测细胞中其他膜上蛋白质的拓扑结构也很有用,我们对质膜 syntaxin进行了验证。这五个Ti质粒集易于且高效地用于Gateway克隆和本氏烟草叶片的瞬时转化。