Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany.
Nat Commun. 2024 Jan 11;15(1):423. doi: 10.1038/s41467-023-43911-x.
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
拟南芥初生根对磷(Pi)缺乏的生长响应主要受质外体铁(Fe)的变化控制。在 Pi 缺乏时,根尖分生组织中质外体 Fe 的沉积激活了导致分生组织维持停止和细胞伸长抑制的途径。在这里,我们报告称,一个未被表征的细胞色素 b561 和 DOMON 结构域(CYBDOM)蛋白家族成员,命名为 CRR,以依赖抗坏血酸的方式促进铁还原,并控制质外体铁的沉积。在低 Pi 条件下, crr 突变体表现出与根分生组织中质外体 Fe 增加和分生组织细胞分裂减少相关的初生根生长增强的表型。相反,CRR 的过表达会消除质外体 Fe 的沉积,使初生根生长对低 Pi 不敏感。 crr 单突变体和 crr hyp1 双突变体(另一个 CYDOM 家族成员的无功能等位基因)在萌发和幼苗生长期间对高 Fe 胁迫表现出更高的耐受性。相反,CRR 的过表达与 Fe 向地上部的吸收和转运增加有关,导致植物对 Fe 过量高度敏感。我们的结果确定了一种铁还原酶,该酶参与 Fe 稳态和对非生物胁迫的发育响应,并揭示了 CYBDOM 蛋白在植物中的生物学作用。