Suppr超能文献

心肌舒张通过快速拉伸加速,而非后负荷降低。

Myocardial relaxation is accelerated by fast stretch, not reduced afterload.

作者信息

Chung Charles S, Hoopes Charles W, Campbell Kenneth S

机构信息

Department of Physiology, Wayne State University, Detroit, MI, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA.

Department of Surgery, University of Kentucky, Lexington, KY, USA.

出版信息

J Mol Cell Cardiol. 2017 Feb;103:65-73. doi: 10.1016/j.yjmcc.2017.01.004. Epub 2017 Jan 11.

Abstract

Fast relaxation of cross-bridge generated force in the myocardium facilitates efficient diastolic function. Recently published research studying mechanisms that modulate the relaxation rate has focused on molecular factors. Mechanical factors have received less attention since the 1980s when seminal work established the theory that reducing afterload accelerates the relaxation rate. Clinical trials using afterload reducing drugs, partially based on this theory, have thus far failed to improve outcomes for patients with diastolic dysfunction. Therefore, we reevaluated the protocols that suggest reducing afterload accelerates the relaxation rate and identified that myocardial relengthening was a potential confounding factor. We hypothesized that the speed of myocardial relengthening at end systole (end systolic strain rate), and not afterload, modulates relaxation rate and tested this hypothesis using electrically-stimulated trabeculae from mice, rats, and humans. We used load-clamp techniques to vary afterload and end systolic strain rate independently. Our data show that the rate of relaxation increases monotonically with end systolic strain rate but is not altered by afterload. Computer simulations mimic this behavior and suggest that fast relengthening quickens relaxation by accelerating the detachment of cross-bridges. The relationship between relaxation rate and strain rate is novel and upends the prevailing theory that afterload modifies relaxation. In conclusion, myocardial relaxation is mechanically modified by the rate of stretch at end systole. The rate of myocardial relengthening at end systole may be a new diagnostic indicator or target for treatment of diastolic dysfunction.

摘要

心肌中横桥产生的力的快速松弛有助于实现有效的舒张功能。最近发表的研究调节松弛速率机制的文献主要聚焦于分子因素。自20世纪80年代开创性研究确立降低后负荷可加速松弛速率这一理论以来,机械因素受到的关注较少。部分基于该理论使用降低后负荷药物的临床试验,至今未能改善舒张功能障碍患者的预后。因此,我们重新评估了那些认为降低后负荷可加速松弛速率的方案,并确定心肌再拉伸是一个潜在的混杂因素。我们假设收缩末期心肌再拉伸的速度(收缩末期应变率)而非后负荷调节松弛速率,并使用来自小鼠、大鼠和人类的电刺激小梁对此假设进行了测试。我们使用负荷钳技术分别改变后负荷和收缩末期应变率。我们的数据表明,松弛速率随收缩末期应变率单调增加,但不受后负荷影响。计算机模拟模拟了这种行为,并表明快速再拉伸通过加速横桥的分离来加快松弛。松弛速率与应变率之间的关系是新颖的,颠覆了后负荷改变松弛的主流理论。总之,心肌松弛在机械上由收缩末期的拉伸速率改变。收缩末期心肌再拉伸的速率可能是舒张功能障碍的一个新的诊断指标或治疗靶点。

相似文献

6
Contraction-relaxation coupling: determination of the onset of diastole.
Am J Physiol. 1999 Jul;277(1):H23-7. doi: 10.1152/ajpheart.1999.277.1.H23.
8
Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction.
Cardiovasc Res. 1999 Aug 1;43(2):344-53. doi: 10.1016/s0008-6363(99)00099-1.

引用本文的文献

4
Molecular regulation of stretch activation.拉伸激活的分子调控。
Am J Physiol Cell Physiol. 2022 Dec 1;323(6):C1728-C1739. doi: 10.1152/ajpcell.00101.2022. Epub 2022 Oct 24.
6
Pressing physiology to move our understanding of cytosolic calcium dynamics.推动生理学以加深我们对胞质钙动力学的理解。
J Appl Physiol (1985). 2022 Sep 1;133(3):661-662. doi: 10.1152/japplphysiol.00453.2022. Epub 2022 Aug 18.
10

本文引用的文献

4
Cardiac muscle mechanics: Sarcomere length matters.心肌力学:肌节长度至关重要。
J Mol Cell Cardiol. 2016 Feb;91:148-50. doi: 10.1016/j.yjmcc.2015.12.006. Epub 2015 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验