Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland 1142, New Zealand.
Eur Heart J Cardiovasc Imaging. 2017 May 1;18(8):862-869. doi: 10.1093/ehjci/jew304.
The adult human sinoatrial node (SAN) has a specialized fibrotic intramural structure (35-55% fibrotic tissue) that provides mechanical and electrical protection from the surrounding atria. We hypothesize that late gadolinium-enhanced cardiovascular magnetic resonance (LGE-CMR) can be applied to define the fibrotic human SAN structure in vivo.
LGE-CMR atrial scans of healthy volunteers (n olu, 23-52 y.o.) using a 3 Tesla magnetic resonance imaging system with a spatial resolution of 1.0 mm3 or 0.625 × 0.625 × 1.25 mm3 were obtained and analysed. Percent fibrosis of total connective and cardiomyocyte tissue area in segmented atrial regions were measured based on signal intensity differences of fibrotic vs. non-fibrotic cardiomyocyte tissue. A distinct ellipsoidal fibrotic region (length: 23.6 ± 1.9 mm; width: 7.2 ± 0.9 mm; depth: 2.9 ± 0.4 mm) in all hearts was observed along the posterior junction of the crista terminalis and superior vena cava extending towards the interatrial septum, corresponding to the anatomical location of the human SAN. The SAN fibrotic region consisted of 41.9 ± 5.4% of LGE voxels above an average threshold of 2.7 SD (range 2-3 SD) from the non-fibrotic right atrial free wall tissue. Fibrosis quantification and SAN identification by in vivo LGE-CMR were validated in optically mapped explanted donor hearts ex vivo (n ivo, 19-65 y.o.) by contrast-enhanced CMR (9.4 Tesla; up to 90 µm3 resolution) correlated with serial histological sections of the SAN.
This is the first study to visualize the 3D human SAN fibrotic structure in vivo using LGE-CMR. Identification of the 3D SAN location and its high fibrotic content by LGE-CMR may provide a new tool to avoid or target SAN structure during ablation.
成人窦房结(SAN)具有特化的纤维性壁内结构(35-55%的纤维组织),为周围心房提供机械和电保护。我们假设钆延迟增强心血管磁共振(LGE-CMR)可用于体内定义纤维化的人类 SAN 结构。
使用 3T 磁共振成像系统对健康志愿者(n=23-52 岁)进行 LGE-CMR 心房扫描,空间分辨率为 1.0mm3 或 0.625×0.625×1.25mm3,并进行分析。基于纤维化与非纤维化心肌组织之间的信号强度差异,测量分割心房区域内总结缔组织和心肌组织面积的纤维化百分比。在所有心脏中,均观察到沿冠状窦末端和上腔静脉后缘延伸至房间隔的后交界的特定椭圆形纤维区域(长度:23.6±1.9mm;宽度:7.2±0.9mm;深度:2.9±0.4mm),与人类 SAN 的解剖位置相对应。SAN 纤维区域由 LGE 体素组成,高于平均阈值 2.7 SD(范围 2-3 SD),这些体素位于非纤维化右房游离壁组织之上,占 41.9±5.4%。通过与 SAN 的光学映射和组织学切片比较,在离体供体心脏(n=19-65 岁)中验证了体内 LGE-CMR 的纤维化定量和 SAN 识别。
这是第一项使用 LGE-CMR 可视化体内 3D 人类 SAN 纤维化结构的研究。LGE-CMR 可识别 3D SAN 位置及其高纤维化含量,为消融过程中避免或靶向 SAN 结构提供了新工具。