Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA; email:
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; email:
Annu Rev Cell Dev Biol. 2022 Oct 6;38:349-374. doi: 10.1146/annurev-cellbio-120420-100215. Epub 2022 May 13.
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
自从提出差异黏附假说以来,科学家们一直着迷于细胞黏附如何介导细胞的自我组织,以在发育过程中形成空间模式。寻找具有同亲结合特异性的分子工具包导致了多种黏附分子的出现。最近对皮质张力在黏附结合中起主导作用的理解,将差异黏附研究的重点重新引导到黏附蛋白的信号功能,以调节肌动球蛋白的收缩性。更广泛的界面张力差异框架包括黏附分子和非黏附分子,它们共同的功能是在细胞分选过程中调节界面张力,以产生不同的组织模式。基于黏附的稳健图案形成需要形态发生素信号、细胞命运决定和黏附变化之间的紧密协调。当前在连接理论和实验方法方面的进展为理解基于黏附的组织图案形成过程中的分子、细胞和组织动力学提供了令人兴奋的机会,跨越多个时间和长度尺度。