Suppr超能文献

大数据集线性混合模型的稀疏变分分析

Sparse Variational Analysis of Linear Mixed Models for Large Data Sets.

作者信息

Armagan Artin, Dunson David

机构信息

Department of Statistical Science, Duke University, Durham, NC 27708.

出版信息

Stat Probab Lett. 2011 Aug 1;81(8):1056-1062. doi: 10.1016/j.spl.2011.02.029.

Abstract

It is increasingly common to be faced with longitudinal or multi-level data sets that have large numbers of predictors and/or a large sample size. Current methods of fitting and inference for mixed effects models tend to perform poorly in such settings. When there are many variables, it is appealing to allow uncertainty in subset selection and to obtain a sparse characterization of the data. Bayesian methods are available to address these goals using Markov chain Monte Carlo (MCMC), but MCMC is very computationally expensive and can be infeasible in large p and/or large n problems. As a fast approximate Bayes solution, we recommend a novel approximation to the posterior relying on variational methods. Variational methods are used to approximate the posterior of the parameters in a decomposition of the variance components, with priors chosen to obtain a sparse solution that allows selection of random effects. The method is evaluated through a simulation study, and applied to an epidemiological application.

摘要

面对具有大量预测变量和/或大样本量的纵向或多层次数据集越来越常见。当前混合效应模型的拟合和推断方法在这种情况下往往表现不佳。当存在许多变量时,在子集选择中考虑不确定性并获得数据的稀疏特征很有吸引力。贝叶斯方法可通过马尔可夫链蒙特卡罗(MCMC)来实现这些目标,但MCMC计算成本非常高,在大p和/或大n问题中可能不可行。作为一种快速近似贝叶斯解决方案,我们推荐一种依赖变分方法对后验进行的新颖近似。变分方法用于在方差分量分解中近似参数的后验,选择先验以获得允许选择随机效应的稀疏解。该方法通过模拟研究进行评估,并应用于一项流行病学应用中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6150/3138673/a6fd85442f9d/nihms281971f1.jpg

相似文献

2
Variational Hamiltonian Monte Carlo via Score Matching.通过得分匹配的变分哈密顿蒙特卡罗方法
Bayesian Anal. 2018 Jun;13(2):485-506. doi: 10.1214/17-ba1060. Epub 2017 Jul 25.
4
Functional regression via variational Bayes.通过变分贝叶斯进行函数回归
Electron J Stat. 2011 Jan 1;5:572-602. doi: 10.1214/11-ejs619.
6
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.
8
Fast approximate inference for multivariate longitudinal data.多元纵向数据的快速近似推断
Biostatistics. 2022 Dec 12;24(1):177-192. doi: 10.1093/biostatistics/kxab021.
9
Quantifying Registration Uncertainty With Sparse Bayesian Modelling.基于稀疏贝叶斯模型的配准不确定性量化。
IEEE Trans Med Imaging. 2017 Feb;36(2):607-617. doi: 10.1109/TMI.2016.2623608. Epub 2016 Nov 1.

引用本文的文献

1
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis.纵向形状分析混合效应模型中的贝叶斯协变量选择
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:656-659. doi: 10.1109/ISBI.2016.7493352. Epub 2016 Jun 16.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验