Suppr超能文献

评估澳大利亚昆士兰州百日咳流行的社会和环境决定因素:贝叶斯时空分析

Assessing the social and environmental determinants of pertussis epidemics in Queensland, Australia: a Bayesian spatio-temporal analysis.

作者信息

Huang X, Lambert S, Lau C, Soares Magalhaes R J, Marquess J, Rajmokan M, Milinovich G, Hu W

机构信息

School of Public Health and Social Work,Institute of Health and Biomedical Innovation Queensland University of Technology,Brisbane,Australia.

UQ Child Health Research Centre, The University of Queensland,Brisbane,Australia.

出版信息

Epidemiol Infect. 2017 Apr;145(6):1221-1230. doi: 10.1017/S0950268816003289. Epub 2017 Jan 16.

Abstract

Pertussis epidemics have displayed substantial spatial heterogeneity in countries with high socioeconomic conditions and high vaccine coverage. This study aims to investigate the relationship between pertussis risk and socio-environmental factors on the spatio-temporal variation underlying pertussis infection. We obtained daily case numbers of pertussis notifications from Queensland Health, Australia by postal area, for the period January 2006 to December 2012. A Bayesian spatio-temporal model was used to quantify the relationship between monthly pertussis incidence and socio-environmental factors. The socio-environmental factors included monthly mean minimum temperature (MIT), monthly mean vapour pressure (VAP), Queensland school calendar pattern (SCP), and socioeconomic index for area (SEIFA). An increase in pertussis incidence was observed from 2006 to 2010 and a slight decrease from 2011 to 2012. Spatial analyses showed pertussis incidence across Queensland postal area to be low and more spatially homogeneous during 2006-2008; incidence was higher and more spatially heterogeneous after 2009. The results also showed that the average decrease in monthly pertussis incidence was 3·1% [95% credible interval (CrI) 1·3-4·8] for each 1 °C increase in monthly MIT, while average increase in monthly pertussis incidences were 6·2% (95% CrI 0·4-12·4) and 2% (95% CrI 1-3) for SCP periods and for each 10-unit increase in SEIFA, respectively. This study demonstrated that pertussis transmission is significantly associated with MIT, SEIFA, and SCP. Mapping derived from this work highlights the potential for future investigation and areas for focusing future control strategies.

摘要

在社会经济条件良好且疫苗接种覆盖率高的国家,百日咳疫情呈现出显著的空间异质性。本研究旨在探讨百日咳风险与社会环境因素之间的关系,以及这些因素对百日咳感染时空变异的影响。我们获取了澳大利亚昆士兰州卫生部门按邮政区域统计的2006年1月至2012年12月期间百日咳报告的每日病例数。采用贝叶斯时空模型来量化每月百日咳发病率与社会环境因素之间的关系。社会环境因素包括月平均最低气温(MIT)、月平均水汽压(VAP)、昆士兰州学校日历模式(SCP)以及地区社会经济指数(SEIFA)。2006年至2010年百日咳发病率上升,2011年至2012年略有下降。空间分析表明,2006 - 2008年昆士兰州各邮政区域的百日咳发病率较低且空间分布较为均匀;2009年后发病率较高且空间异质性更大。结果还显示,每月MIT每升高1℃,百日咳月发病率平均下降3.1% [95%可信区间(CrI)1.3 - 4.8],而SCP期间以及SEIFA每增加10个单位,百日咳月发病率平均分别上升6.2%(95% CrI 0.4 - 12.4)和2%(95% CrI 1 - 3)。本研究表明,百日咳传播与MIT、SEIFA和SCP显著相关。这项工作得出的地图突出了未来调查的潜力以及未来控制策略的重点区域。

相似文献

1
Assessing the social and environmental determinants of pertussis epidemics in Queensland, Australia: a Bayesian spatio-temporal analysis.
Epidemiol Infect. 2017 Apr;145(6):1221-1230. doi: 10.1017/S0950268816003289. Epub 2017 Jan 16.
4
The geographical co-distribution and socio-ecological drivers of childhood pneumonia and diarrhoea in Queensland, Australia.
Epidemiol Infect. 2015 Apr;143(5):1096-104. doi: 10.1017/S095026881400171X. Epub 2014 Jul 14.
5
Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model.
Environ Res. 2016 Apr;146:308-14. doi: 10.1016/j.envres.2016.01.013. Epub 2016 Jan 19.
9
Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.
PLoS One. 2011;6(10):e25688. doi: 10.1371/journal.pone.0025688. Epub 2011 Oct 13.
10

引用本文的文献

2
Spatial analysis of COVID-19 incidence and its determinants using spatial modeling: A study on India.
Environ Chall (Amst). 2021 Aug;4:100096. doi: 10.1016/j.envc.2021.100096. Epub 2021 Apr 10.
3
Population-Based Study of Pertussis Incidence and Risk Factors among Persons >50 Years of Age, Australia.
Emerg Infect Dis. 2024 Jan;30(1):105-115. doi: 10.3201/eid3001.230261.
6
Geographic disparities and socio-demographic predictors of pertussis risk in Florida.
PeerJ. 2021 Aug 31;9:e11902. doi: 10.7717/peerj.11902. eCollection 2021.
7
The socio-economic determinants of COVID-19: A spatial analysis of German county level data.
Socioecon Plann Sci. 2021 Dec;78:101083. doi: 10.1016/j.seps.2021.101083. Epub 2021 May 14.
8
Identification of risk factors contributing to COVID-19 incidence rates in Bangladesh: A GIS-based spatial modeling approach.
Heliyon. 2021 Feb;7(2):e06260. doi: 10.1016/j.heliyon.2021.e06260. Epub 2021 Feb 10.
10
Using big data to predict pertussis infections in Jinan city, China: a time series analysis.
Int J Biometeorol. 2020 Jan;64(1):95-104. doi: 10.1007/s00484-019-01796-w. Epub 2019 Sep 2.

本文引用的文献

1
Pertussis vaccines: WHO position paper, August 2015--Recommendations.
Vaccine. 2016 Mar 14;34(12):1423-5. doi: 10.1016/j.vaccine.2015.10.136. Epub 2015 Nov 10.
2
The contribution of PCR testing to influenza and pertussis notifications in Australia.
Epidemiol Infect. 2016 Jan;144(2):306-14. doi: 10.1017/S0950268815001004. Epub 2015 Jun 26.
3
Waning vaccine immunity in teenagers primed with whole cell and acellular pertussis vaccine: recent epidemiology.
Expert Rev Vaccines. 2014 Sep;13(9):1081-106. doi: 10.1586/14760584.2014.944167. Epub 2014 Aug 5.
4
6
Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia.
Emerg Infect Dis. 2014 Apr;20(4):626-33. doi: 10.3201/eid2004.131478.
7
Geospatial and epidemiological analysis of severe burns in New South Wales by residential postcodes.
Burns. 2014 Jun;40(4):670-82. doi: 10.1016/j.burns.2013.09.005. Epub 2013 Nov 26.
9
Perplexities of pertussis: recent global epidemiological trends and their potential causes.
Epidemiol Infect. 2014 Apr;142(4):672-84. doi: 10.1017/S0950268812003093. Epub 2013 Jan 16.
10
Changing spatial epidemiology of pertussis in continental USA.
Proc Biol Sci. 2012 Nov 22;279(1747):4574-81. doi: 10.1098/rspb.2012.1761. Epub 2012 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验