West China School of Public Health / West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province, China.
College of Mathematics, Sichuan University, Chengdu, Sichuan Province, China.
BMC Infect Dis. 2024 Aug 15;24(1):832. doi: 10.1186/s12879-024-09718-x.
Describing the transmission dynamics of infectious diseases across different regions is crucial for effective disease surveillance. The multivariate time series (MTS) model has been widely adopted for constructing cross-regional infectious disease transmission networks due to its strengths in interpretability and predictive performance. Nevertheless, the assumption of constant parameters frequently disregards the dynamic shifts in disease transmission rates, thereby compromising the accuracy of early warnings. This study investigated the applicability of time-varying MTS models in multi-regional infectious disease monitoring and explored strategies for model selection.
This study focused on two prominent time-varying MTS models: the time-varying parameter-stochastic volatility-vector autoregression (TVP-SV-VAR) model and the time-varying VAR model using the generalized additive framework (tvvarGAM), and intended to explore and verify their applicable conditions for the surveillance of infectious diseases. For the first time, this study proposed the time delay coefficient and spatial sparsity indicators for model selection. These indicators quantify the temporal lags and spatial distribution of infectious disease data, respectively. Simulation study adopted from real-world infectious disease surveillance was carried out to compare model performances under various scenarios of spatio-temporal variation as well as random volatility. Meanwhile, we illustrated how the modelling process could help the surveillance of infectious diseases with an application to the influenza-like case in Sichuan Province, China.
When the spatio-temporal variation was small (time delay coefficient: 0.1-0.2, spatial sparsity:0.1-0.3), the TVP-SV-VAR model was superior with smaller fitting residuals and standard errors of parameter estimation than those of the tvvarGAM model. In contrast, the tvvarGAM model was preferable when the spatio-temporal variation increased (time delay coefficient: 0.2-0.3, spatial sparsity: 0.6-0.9).
This study emphasized the importance of considering spatio-temporal variations when selecting appropriate models for infectious disease surveillance. By incorporating our novel indicators-the time delay coefficient and spatial sparsity-into the model selection process, the study could enhance the accuracy and effectiveness of infectious disease monitoring efforts. This approach was not only valuable in the context of this study, but also has broader implications for improving time-varying MTS analyses in various applications.
描述传染病在不同地区的传播动态对于有效的疾病监测至关重要。由于其在可解释性和预测性能方面的优势,多元时间序列 (MTS) 模型已被广泛用于构建跨区域传染病传播网络。然而,参数恒定的假设常常忽略了疾病传播率的动态变化,从而降低了早期预警的准确性。本研究探讨了时变 MTS 模型在多区域传染病监测中的适用性,并探讨了模型选择策略。
本研究重点关注两种突出的时变 MTS 模型:时变参数-随机波动率-向量自回归 (TVP-SV-VAR) 模型和使用广义加性框架 (tvvarGAM) 的时变 VAR 模型,并旨在探索和验证它们在传染病监测中的适用条件。本研究首次提出了用于模型选择的时滞系数和空间稀疏性指标。这些指标分别量化了传染病数据的时间滞后和空间分布。采用来自真实世界传染病监测的模拟研究比较了在各种时空变化和随机波动场景下的模型性能。同时,我们通过应用于中国四川省流感样病例的实例说明了建模过程如何帮助传染病监测。
当时空变化较小时(时滞系数:0.1-0.2,空间稀疏性:0.1-0.3),TVP-SV-VAR 模型优于 tvvarGAM 模型,具有更小的拟合残差和参数估计标准误差。相比之下,当时空变化增加时(时滞系数:0.2-0.3,空间稀疏性:0.6-0.9),tvvarGAM 模型更可取。
本研究强调了在选择适合传染病监测的模型时考虑时空变化的重要性。通过将我们新的指标-时滞系数和空间稀疏性-纳入模型选择过程,本研究可以提高传染病监测工作的准确性和有效性。这种方法不仅在本研究中具有价值,而且对改进各种应用中的时变 MTS 分析具有更广泛的意义。