Suppr超能文献

利用智能手机获取的行为特征自动预测健康状况

Automatic Prediction of Health Status Using Smartphone-Derived Behavior Profiles.

出版信息

IEEE J Biomed Health Inform. 2017 Nov;21(6):1750-1760. doi: 10.1109/JBHI.2017.2649602. Epub 2017 Jan 9.

Abstract

OBJECTIVE

Current methods of assessing the affect patients' health has on their daily lives are extremely limited. The aim of this paper is to develop a sensor-based approach to health status measurement in order to objectively measure health status.

METHODS

Techniques to generate human behavior profiles, derived from the smartphone accelerometer and gyroscope sensors, are proposed. Experiments, using SVM regression models, are then conducted in order to evaluate the use of the proposed behavior profiles as a predictor of health status.

RESULTS

Experiments were conducted on data from 171 participants, with an average of 114 h of data per participant. Regression models were trained and tested on the 10 SF-36 self-ratings. Results showed that the eight individual SF-36 scales and two component scores could be predicted with an average correlation of 0.683 and 0.698, respectively. General health was predicted with an average correlation of 0.752.

CONCLUSION

Research shows that the clinically important difference for SF-36 self-ratings are approximately 10 points. Health status prediction errors in this study were 11.7 points on average. While the problem has not been fully solved, this paper presents a hugely promising direction for health status prediction.

SIGNIFICANCE

Using the proposed techniques, health status could be measured using unobtrusive, inexpensive, and already available hardware. It could provide a means for clinicians to accurately and objectively assess the daily life benefits of treatments on an individual patient basis.

摘要

目的

目前评估患者健康对日常生活影响的方法极其有限。本文旨在开发一种基于传感器的健康状况测量方法,以客观地测量健康状况。

方法

提出了从智能手机加速度计和陀螺仪传感器生成人类行为特征的技术。然后进行了使用支持向量机回归模型的实验,以评估所提出的行为特征作为健康状况预测因子的使用。

结果

在 171 名参与者的数据上进行了实验,每个参与者平均有 114 小时的数据。对 10 个 SF-36 自评量表进行了回归模型的训练和测试。结果表明,八个单独的 SF-36 量表和两个分量得分可以分别以 0.683 和 0.698 的平均相关性进行预测。一般健康状况的预测平均相关性为 0.752。

结论

研究表明,SF-36 自评量表的临床重要差异约为 10 分。本研究中的健康状况预测误差平均为 11.7 分。虽然问题尚未完全解决,但本文为健康状况预测提供了一个极有前途的方向。

意义

使用所提出的技术,可以使用非侵入性、廉价且已经可用的硬件来测量健康状况。它可以为临床医生提供一种手段,根据个体患者的情况,准确和客观地评估治疗对日常生活的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验