The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.
The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.
J Hematol Oncol. 2021 Jul 6;14(1):107. doi: 10.1186/s13045-021-01118-x.
Recently, a novel knowledge bank (KB) approach to predict outcomes of individual patients with acute myeloid leukemia (AML) was developed using unbiased machine learning. To validate its prognostic value, we analyzed 1612 adults with de novo AML treated on Cancer and Leukemia Group B front-line trials who had pretreatment clinical, cytogenetics, and mutation data on 81 leukemia/cancer-associated genes available. We used receiver operating characteristic (ROC) curves and the area under the curve (AUC) to evaluate the predictive values of the KB algorithm and other risk classifications. The KB algorithm predicted 3-year overall survival (OS) probability in the entire patient cohort (AUC = 0.799), and both younger (< 60 years) (AUC = 0.747) and older patients (AUC = 0.770). The KB algorithm predicted non-remission death (AUC = 0.860) well but was less accurate in predicting relapse death (AUC = 0.695) and death in first complete remission (AUC = 0.603). The KB algorithm's 3-year OS predictive value was higher than that of the 2017 European LeukemiaNet (ELN) classification (AUC = 0.707, p < 0.001) and 2010 ELN classification (AUC = 0.721, p < 0.001) but did not differ significantly from that of the 17-gene stemness score (AUC = 0.732, p = 0.10). Analysis of additional cytogenetic and molecular markers not included in the KB algorithm revealed that taking into account atypical complex karyotype, infrequent recurrent balanced chromosome rearrangements and mutational status of the SAMHD1, AXL and NOTCH1 genes may improve the KB algorithm. We conclude that the KB algorithm has a high predictive value that is higher than those of the 2017 and 2010 ELN classifications. Inclusion of additional genetic features might refine the KB algorithm.
最近,一种新的知识库 (KB) 方法被开发出来,用于使用无偏机器学习预测个体急性髓系白血病 (AML) 患者的结局。为了验证其预后价值,我们分析了 1612 例接受癌症和白血病组 B 一线治疗的初治 AML 成人患者的临床、细胞遗传学和 81 个白血病/癌症相关基因的突变数据。我们使用接受者操作特征 (ROC) 曲线和曲线下面积 (AUC) 来评估 KB 算法和其他风险分类的预测值。KB 算法预测了整个患者队列的 3 年总生存率 (OS) 概率 (AUC=0.799),并且年轻 (<60 岁) (AUC=0.747) 和老年患者 (AUC=0.770) 也能预测。KB 算法很好地预测了非缓解死亡 (AUC=0.860),但在预测复发死亡 (AUC=0.695) 和首次完全缓解后的死亡 (AUC=0.603) 方面准确性较低。KB 算法的 3 年 OS 预测值高于 2017 年欧洲白血病网络 (ELN) 分类 (AUC=0.707,p<0.001) 和 2010 年 ELN 分类 (AUC=0.721,p<0.001),但与 17 基因干性评分 (AUC=0.732,p=0.10) 无显著差异。对 KB 算法中未包含的其他细胞遗传学和分子标志物的分析表明,考虑到非典型复杂核型、不常见的复发性平衡染色体重排以及 SAMHD1、AXL 和 NOTCH1 基因突变状态,可能会提高 KB 算法的预测价值。我们得出结论,KB 算法具有较高的预测价值,高于 2017 年和 2010 年的 ELN 分类。纳入额外的遗传特征可能会完善 KB 算法。