Division of Enzymology and Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
Photosynth Res. 2017 Dec;134(3):281-289. doi: 10.1007/s11120-016-0331-1. Epub 2017 Jan 16.
In higher plants, ferredoxin (Fd) and ferredoxin-NADP reductase (FNR) are each present as distinct isoproteins of photosynthetic type (leaf type) and non-photosynthetic type (root type). Root-type Fd and FNR are considered to facilitate the electron transfer from NADPH to Fd in the direction opposite to that occurring in the photosynthetic processes. We previously reported the crystal structure of the electron transfer complex between maize leaf FNR and Fd (leaf FNR:Fd complex), providing insights into the molecular interactions of the two proteins. Here we show the 2.49 Å crystal structure of the maize root FNR:Fd complex, which reveals that the orientation of FNR and Fd remarkably varies from that of the leaf FNR:Fd complex, giving a structural basis for reversing the redox path. Root FNR was previously shown to interact preferentially with root Fd over leaf Fd, while leaf FNR retains similar affinity for these two types of Fds. The structural basis for such differential interaction was investigated using site-directed mutagenesis of the isotype-specific amino acid residues on the interface of Fd and FNR, based on the crystal structures of the FNR:Fd complexes from maize leaves and roots. Kinetic and physical binding analyses of the resulting mutants lead to the conclusion that the rearrangement of the charged amino acid residues on the Fd-binding surface of FNR confers isotype-specific interaction with Fd, which brings about the evolutional switch between photosynthetic and heterotrophic redox cascades.
在高等植物中,铁氧还蛋白(Fd)和铁氧还蛋白-NADP 还原酶(FNR)各自以光合作用型(叶型)和非光合作用型(根型)的不同同工型存在。根型 Fd 和 FNR 被认为有助于 NADPH 向 Fd 的电子转移,其方向与光合作用过程中发生的方向相反。我们之前报道了玉米叶 FNR 和 Fd 之间电子转移复合物的晶体结构(叶 FNR:Fd 复合物),为这两种蛋白质的分子相互作用提供了深入了解。在这里,我们展示了玉米根 FNR:Fd 复合物的 2.49Å 晶体结构,该结构揭示了 FNR 和 Fd 的取向与叶 FNR:Fd 复合物明显不同,为逆转氧化还原途径提供了结构基础。根 FNR 先前被证明优先与根 Fd 相互作用,而不是与叶 Fd 相互作用,而叶 FNR 对这两种类型的 Fd 保持相似的亲和力。这种差异相互作用的结构基础是基于玉米叶和根 FNR:Fd 复合物的晶体结构,通过对 Fd 和 FNR 界面上同工型特异性氨基酸残基的定点突变进行研究的。对所得突变体的动力学和物理结合分析得出的结论是,FNR 上 Fd 结合表面上带电荷氨基酸残基的重排赋予了与 Fd 的同工型特异性相互作用,从而导致光合作用和异养氧化还原级联之间的进化开关。