Suppr超能文献

植物型铁氧还蛋白和铁氧还蛋白依赖的代谢。

Plant type ferredoxins and ferredoxin-dependent metabolism.

机构信息

Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany.

出版信息

Plant Cell Environ. 2013 Jun;36(6):1071-84. doi: 10.1111/pce.12046. Epub 2013 Jan 7.

Abstract

Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.

摘要

铁氧还蛋白(Fd)是一种存在于所有进行放氧光合作用的生物体中的含有[2Fe-2S]簇的小蛋白。Fd 是叶绿体电子传递链基质侧上第一个电子的可溶受体,因此对确定这些电子分配到不同的代谢反应至关重要。在叶绿体中,电子的主要受体是 NADPH 的产生,而 NADPH 主要在 CO2 的同化过程中被消耗。除了在光合作用中的主要功能外,Fds 还参与了许多其他必需的代谢反应,包括叶绿素、光敏色素和脂肪酸的生物合成,硫和氮同化的几个步骤,以及通过硫氧还蛋白系统和 Halliwell-Asada 循环进行的氧化还原信号和氧化还原平衡的维持。这使得 Fds 成为类囊体膜和各种依赖这些电子的可溶性酶之间电子转移的关键决定因素。在本文中,我们将首先描述目前关于高等植物叶绿体中存在的各种 Fd 同工型的结构和功能的知识,然后讨论 Fd 氧化涉及的过程,引入相应的酶,并讨论关于它们与 Fd 的相对相互作用的已知内容。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验