Niebuhr Tobias, Junge Mirko
a Universität Hamburg, Fachbereich Mathematik , Hamburg , Germany.
b Volkswagen AG, Konzernforschung K-GERFS/G , Wolfsburg , Germany.
Traffic Inj Prev. 2017 Jul 4;18(5):537-543. doi: 10.1080/15389588.2016.1264580. Epub 2017 Jan 17.
Though it is common to refer to age-specific groups (e.g., children, adults, elderly), smooth trends conditional on age are mainly ignored in the literature. The present study examines the pedestrian injury risk in full-frontal pedestrian-to-passenger car accidents and incorporates age-in addition to collision speed and injury severity-as a plug-in parameter.
Recent work introduced a model for pedestrian injury risk functions using explicit formulae with easily interpretable model parameters. This model is expanded by pedestrian age as another model parameter. Using the German In-Depth Accident Study (GIDAS) to obtain age-specific risk proportions, the model parameters are fitted to the raw data and then smoothed by broken-line regression.
The approach supplies explicit probabilities for pedestrian injury risk conditional on pedestrian age, collision speed, and injury severity under investigation. All results yield consistency to each other in the sense that risks for more severe injuries are less probable than those for less severe injuries. As a side product, the approach indicates specific ages at which the risk behavior fundamentally changes. These threshold values can be interpreted as the most robust ages for pedestrians.
The obtained age-wise risk functions can be aggregated and adapted to any population. The presented approach is formulated in such general terms that in can be directly used for other data sets or additional parameters; for example, the pedestrian's sex. Thus far, no other study using age as a plug-in parameter can be found.
尽管提及特定年龄组(如儿童、成年人、老年人)很常见,但文献中主要忽略了以年龄为条件的平滑趋势。本研究考察了全正面行人与乘用车碰撞事故中的行人受伤风险,并将年龄以及碰撞速度和伤害严重程度作为插入参数纳入研究。
最近的研究工作引入了一种使用具有易于解释的模型参数的显式公式来建立行人受伤风险函数的模型。该模型通过将行人年龄作为另一个模型参数进行扩展。利用德国深度事故研究(GIDAS)获取特定年龄的风险比例,将模型参数拟合到原始数据,然后通过折线回归进行平滑处理。
该方法提供了基于行人年龄、碰撞速度和所研究的伤害严重程度的行人受伤风险的显式概率。所有结果相互一致,即更严重伤害的风险比不太严重伤害的风险可能性更小。作为一个附带结果,该方法指出了风险行为发生根本变化的特定年龄。这些阈值可以解释为行人最稳健的年龄。
所获得的按年龄划分的风险函数可以汇总并适用于任何人群。所提出的方法表述得非常通用,以至于可以直接用于其他数据集或其他参数;例如,行人的性别。到目前为止,尚未发现其他将年龄作为插入参数的研究。