Suppr超能文献

解析豆科植物根系微生物组的组成和功能。

Deciphering composition and function of the root microbiome of a legume plant.

机构信息

Plant-Soil Interactions, Agroscope, Institute for Sustainability Sciences, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland.

Department for Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.

出版信息

Microbiome. 2017 Jan 17;5(1):2. doi: 10.1186/s40168-016-0220-z.

Abstract

BACKGROUND

Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including agricultural systems. Legumes form a root nodule symbiosis with nitrogen-fixing Rhizobia bacteria and thereby account for large, natural nitrogen inputs into soils. Here, we describe the root bacteria microbiome of the legume Trifolium pratense combining culture-dependent and independent methods. For a functional understanding of individual microbiome members and their impact on plant growth, we began to inoculate root microbiome members alone or in combination to Trifolium roots.

RESULTS

At a whole-root scale, Rhizobia bacteria accounted for ~70% of the root microbiome. Other enriched members included bacteria from the genera Pantoea, Sphingomonas, Novosphingobium, and Pelomonas. We built a reference stock of 200 bacteria isolates, and we found that they corresponded to ~20% of the abundant root microbiome members. We developed a microcosm system to conduct simplified microbiota inoculation experiments with plants. We observed that while an abundant root microbiome member reduced plant growth when inoculated alone, this negative effect was alleviated if this Flavobacterium was co-inoculated with other root microbiome members.

CONCLUSIONS

The Trifolium root microbiome was dominated by nutrient-providing Rhizobia bacteria and enriched for bacteria from genera that may provide disease protection. First microbiota inoculation experiments indicated that individual community members can have plant growth compromising activities without being apparently pathogenic, and a more diverse root community can alleviate plant growth compromising activities of its individual members. A trait-based characterization of the reference stock bacteria will permit future microbiota manipulation experiments to decipher overall microbiome functioning and elucidate the biological mechanisms and interactions driving the observed effects. The presented reductionist experimental approach offers countless opportunities for future systematic and functional examinations of the plant root microbiome.

摘要

背景

不同的微生物群落定植于植物根系,并作为微生物组共同发挥作用。尽管豆科植物在包括农业系统在内的众多生态系统中起着关键作用,但有关其根系微生物组的信息却很少。豆科植物与固氮根瘤菌形成根瘤共生体,从而为土壤提供大量的自然氮输入。在这里,我们结合依赖培养和非依赖培养的方法描述了豆科植物三叶草的根细菌微生物组。为了深入了解单个微生物组成员的功能及其对植物生长的影响,我们开始单独或组合接种根微生物组成员到三叶草的根部。

结果

在整个根尺度上,根瘤菌占根微生物组的70%。其他丰富的成员包括泛菌属、鞘氨醇单胞菌属、新鞘氨醇单胞菌属和小球藻属的细菌。我们构建了 200 株细菌分离株的参考库存,我们发现它们对应于丰富的根微生物组成员的20%。我们开发了一个微宇宙系统,用于在植物上进行简化的微生物接种实验。我们观察到,当丰富的根微生物组成员单独接种时会降低植物的生长,但如果将这种黄杆菌与其他根微生物组成员共同接种,这种负面影响会减轻。

结论

三叶草的根微生物组主要由提供营养的根瘤菌组成,并富集了可能提供疾病保护的细菌。首次微生物接种实验表明,单个群落成员在没有明显致病性的情况下可能具有对植物生长不利的活动,而更具多样性的根群落可以减轻其单个成员对植物生长不利的活动。参考库存细菌的基于特征的表征将允许未来的微生物组操作实验来推断整个微生物组的功能,并阐明驱动观察到的效应的生物学机制和相互作用。所提出的简化实验方法为未来对植物根微生物组的系统和功能研究提供了无数机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdc8/5240445/fe90801459c4/40168_2016_220_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验