Suppr超能文献

线粒体融合动力学在心脏中是稳健的,依赖于钙振荡和收缩活动。

Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity.

机构信息

MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107;

Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E859-E868. doi: 10.1073/pnas.1617288114. Epub 2017 Jan 17.

Abstract

Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.

摘要

线粒体融合被认为对维持心肌收缩力很重要,但在培养的心肌细胞中几乎检测不到,并且在心脏中难以直接评估。我们通过体内腺病毒转导与基质靶向光活化 GFP 和共聚焦显微镜克服了这一障碍。在整个大鼠心脏中的成像表明,心室肌细胞中线粒体网络的形成和融合活性。在分离后即刻,心肌细胞表现出广泛的线粒体连接和融合,这种融合在培养中会衰减(在 24-48 小时)。融合表现为相邻细胞器之间的快速内容混合事件和相邻和远距离线粒体之间的较慢事件。培养中融合的丧失可能是由于钙振荡/收缩活性和融合蛋白 1(Mfn1)的下降所致,因为(i)维拉帕米抑制收缩和线粒体融合,(ii)自发收缩或短期场刺激后,心肌细胞中的融合活性增加,(iii)ryanodine 受体-2 介导的钙振荡增加了 HEK293 细胞中的融合活性,并且 Mfn1 发生了互补变化。酒精中毒动物体内的心脏收缩功能减弱也与线粒体融合减弱有关。因此,线粒体融合减弱可能有助于心肌病的发病机制。

相似文献

2
Mitoflash lights single mitochondrial dynamics events in mature cardiomyocytes.Mitoflash 可点亮成熟心肌细胞中的单个线粒体动力学事件。
Biochem Biophys Res Commun. 2018 Sep 5;503(2):729-736. doi: 10.1016/j.bbrc.2018.06.068. Epub 2018 Jun 21.

引用本文的文献

3
Mitochondrial and microtubule defects in Exfoliation Glaucoma.剥脱性青光眼中的线粒体和微管缺陷
Free Radic Biol Med. 2025 Jun;233:226-239. doi: 10.1016/j.freeradbiomed.2025.03.046. Epub 2025 Apr 1.
6
Molecular mechanisms of mitochondrial dynamics.线粒体动力学的分子机制
Nat Rev Mol Cell Biol. 2025 Feb;26(2):123-146. doi: 10.1038/s41580-024-00785-1. Epub 2024 Oct 17.
7
Calcium oscillations and mitochondrial enzymes in stem cells.干细胞中的钙振荡与线粒体酶
Regen Ther. 2024 Sep 14;26:811-818. doi: 10.1016/j.reth.2024.09.002. eCollection 2024 Jun.

本文引用的文献

3
Metabolic regulation of mitochondrial dynamics.线粒体动力学的代谢调控
J Cell Biol. 2016 Feb 15;212(4):379-87. doi: 10.1083/jcb.201511036. Epub 2016 Feb 8.
5
Mitochondrial Dynamics and Metabolic Regulation.线粒体动态与代谢调控。
Trends Endocrinol Metab. 2016 Feb;27(2):105-117. doi: 10.1016/j.tem.2015.12.001. Epub 2016 Jan 2.
8
Cardiovascular risks and benefits of moderate and heavy alcohol consumption.适量和重度饮酒对心血管的风险和益处。
Nat Rev Cardiol. 2015 Oct;12(10):576-87. doi: 10.1038/nrcardio.2015.91. Epub 2015 Jun 23.
10
How mitochondrial dynamism orchestrates mitophagy.线粒体动态变化如何协调线粒体自噬。
Circ Res. 2015 May 22;116(11):1835-49. doi: 10.1161/CIRCRESAHA.116.306374.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验