Suppr超能文献

用于运动想象 EEG 的低秩线性动力系统。

Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

机构信息

The State Key Laboratory of Intelligent Technology and Systems, Computer Science and Technology School, Tsinghua University, FIT Building, Beijing 100084, China; Institute of Medical Equipment, Wandong Road, Hedong District, Tianjin, China.

The State Key Laboratory of Intelligent Technology and Systems, Computer Science and Technology School, Tsinghua University, FIT Building, Beijing 100084, China.

出版信息

Comput Intell Neurosci. 2016;2016:2637603. doi: 10.1155/2016/2637603. Epub 2016 Dec 21.

Abstract

The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

摘要

近年来,常见空间模式(CSP)和其他时空特征提取方法已成为解决多通道神经活动中运动想象脑电(MI-EEG)模式识别问题最有效和最成功的方法。然而,这些方法需要大量的预处理和后处理,如滤波、去均值和时空特征融合,这容易影响分类准确性。在本文中,我们利用线性动力系统(LDSs)进行 EEG 信号特征提取和分类。LDSs 模型具有许多优点,例如同时生成空间和时间特征矩阵、无需预处理或后处理以及低成本。此外,引入了一种低秩矩阵分解方法来去除噪声和静息状态分量,以提高系统的鲁棒性。然后,我们提出了一种低秩 LDSs 算法,对有限 Grassmannian 上的 LDSs 特征子空间进行分解,并获得更好的性能。在来自“BCI 竞赛 III 数据集 IVa”和“BCI 竞赛 IV 数据库 2a”的公共数据集上进行了广泛的实验。结果表明,与 CSP 和 CSSP 等现有方法相比,我们提出的三种方法具有更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d189/5210283/8e6430e7707d/CIN2016-2637603.001.jpg

相似文献

1
Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
Comput Intell Neurosci. 2016;2016:2637603. doi: 10.1155/2016/2637603. Epub 2016 Dec 21.
2
A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
Med Biol Eng Comput. 2017 Sep;55(9):1589-1603. doi: 10.1007/s11517-017-1622-1. Epub 2017 Feb 4.
3
CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
Comput Biol Med. 2017 Dec 1;91:231-242. doi: 10.1016/j.compbiomed.2017.10.025. Epub 2017 Oct 24.
4
Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
IEEE Trans Cybern. 2019 Sep;49(9):3322-3332. doi: 10.1109/TCYB.2018.2841847. Epub 2018 Jun 14.
5
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.
Comput Math Methods Med. 2020 Jul 20;2020:1981728. doi: 10.1155/2020/1981728. eCollection 2020.
6
A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training.
IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):169-79. doi: 10.1109/TNSRE.2015.2466079. Epub 2015 Aug 20.
7
Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
J Neurosci Methods. 2015 Nov 30;255:85-91. doi: 10.1016/j.jneumeth.2015.08.004. Epub 2015 Aug 13.
9
Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
J Neurosci Methods. 2019 Jul 15;323:98-107. doi: 10.1016/j.jneumeth.2019.05.011. Epub 2019 May 26.
10
A new parameter tuning approach for enhanced motor imagery EEG signal classification.
Med Biol Eng Comput. 2018 Oct;56(10):1861-1874. doi: 10.1007/s11517-018-1821-4. Epub 2018 Apr 4.

本文引用的文献

1
Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems.
IEEE Trans Biomed Eng. 2016 Jan;63(1):15-29. doi: 10.1109/TBME.2015.2487738. Epub 2015 Oct 6.
2
Review of the BCI Competition IV.
Front Neurosci. 2012 Jul 13;6:55. doi: 10.3389/fnins.2012.00055. eCollection 2012.
3
Brain-computer interface in stroke: a review of progress.
Clin EEG Neurosci. 2011 Oct;42(4):245-52. doi: 10.1177/155005941104200410.
4
Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition.
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2273-86. doi: 10.1109/TPAMI.2011.52.
5
Multiclass common spatial patterns and information theoretic feature extraction.
IEEE Trans Biomed Eng. 2008 Aug;55(8):1991-2000. doi: 10.1109/TBME.2008.921154.
6
A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
J Neural Eng. 2008 Mar;5(1):24-35. doi: 10.1088/1741-2560/5/1/003. Epub 2007 Dec 11.
7
An evaluation of autoregressive spectral estimation model order for brain-computer interface applications.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1323-6. doi: 10.1109/IEMBS.2006.259822.
8
Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters.
J Neurosci Methods. 2007 May 15;162(1-2):357-63. doi: 10.1016/j.jneumeth.2007.01.011. Epub 2007 Jan 21.
9
Combined optimization of spatial and temporal filters for improving brain-computer interfacing.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2274-81. doi: 10.1109/TBME.2006.883649.
10
The BCI competition. III: Validating alternative approaches to actual BCI problems.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):153-9. doi: 10.1109/TNSRE.2006.875642.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验