Suppr超能文献

从网络快照推断中心度。

Inferring Centrality from Network Snapshots.

机构信息

Department of Automation, Shanghai Jiao Tong University and the Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.

Department of Aeronautics and Astronautics, University of Washington, Seattle, WA, 98195-2400, USA.

出版信息

Sci Rep. 2017 Jan 18;7:40642. doi: 10.1038/srep40642.

Abstract

The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.

摘要

复杂网络的拓扑结构和动态决定了其功能。然而,许多大规模网络的拓扑结构要么不可用,要么不完整。在没有明确的网络拓扑知识的情况下,我们展示了如何利用从网络动态生成的数据来推断时标中心度,该中心度用于量化共识网络中节点的影响。我们表明,时标中心度可用于构建对共识网络上施加的影响传播率和基础图的基尔霍夫指数的准确估计。此外,时标中心度还编码了共识网络中节点的干扰拒绝能力。我们的发现为从时间数据推断共识网络的性能提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a57/5241648/93cde78ab04a/srep40642-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验