Suppr超能文献

基于高品质因子法布里-珀罗微腔的多功能组织激光器。

Versatile tissue lasers based on high-Q Fabry-Pérot microcavities.

作者信息

Chen Yu-Cheng, Chen Qiushu, Zhang Tingting, Wang Wenjie, Fan Xudong

机构信息

Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.

Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, PR China.

出版信息

Lab Chip. 2017 Jan 31;17(3):538-548. doi: 10.1039/c6lc01457g.

Abstract

Biolasers are an emerging technology for next generation biochemical detection and clinical applications. Progress has recently been made to achieve lasing from biomolecules and single living cells. Tissues, which consist of cells embedded in an extracellular matrix, mimic more closely the actual complex biological environment in a living body and therefore are of more practical significance. Here, we developed a highly versatile tissue laser platform, in which tissues stained with fluorophores are sandwiched in a high-Q Fabry-Pérot microcavity. Distinct lasing emissions from muscle and adipose tissues stained respectively with fluorescein isothiocyanate (FITC) and boron-dipyrromethene (BODIPY), and hybrid muscle/adipose tissue with dual staining were achieved with a threshold of only ∼10 μJ mm. Additionally, we investigated how the tissue structure/geometry, tissue thickness, and staining dye concentration affect the tissue laser. Lasing emission from FITC conjugates (FITC-phalloidin) that specifically target F-actin in muscle tissues was also realized. It is further found that, despite the large fluorescence spectral overlap between FITC and BODIPY in tissues, their lasing emissions could be clearly distinguished and controlled due to their narrow lasing bands and different lasing thresholds, thus enabling highly multiplexed detection. Our tissue laser platform can be broadly applicable to various types of tissues/diseases. It provides a new tool for a wide range of biological and biomedical applications, such as diagnostics/screening of tissues and identification/monitoring of biological transformations in tissue engineering.

摘要

生物激光是一种用于下一代生化检测和临床应用的新兴技术。最近在实现生物分子和单个活细胞的激光发射方面取得了进展。组织由嵌入细胞外基质中的细胞组成,更接近活体中实际复杂的生物环境,因此具有更大的实际意义。在此,我们开发了一种高度通用的组织激光平台,其中用荧光团染色的组织夹在高Q值的法布里-珀罗微腔中。分别用异硫氰酸荧光素(FITC)和硼二吡咯亚甲基(BODIPY)染色的肌肉和脂肪组织以及双重染色的混合肌肉/脂肪组织实现了明显的激光发射,阈值仅为~10 μJ/mm。此外,我们研究了组织结构/几何形状、组织厚度和染色染料浓度如何影响组织激光。还实现了从特异性靶向肌肉组织中F-肌动蛋白的FITC缀合物(FITC-鬼笔环肽)的激光发射。进一步发现,尽管组织中FITC和BODIPY之间存在较大的荧光光谱重叠,但由于它们狭窄的激光带和不同的激光阈值,它们的激光发射可以清晰区分和控制,从而实现高度多重检测。我们的组织激光平台可广泛应用于各种类型的组织/疾病。它为广泛的生物学和生物医学应用提供了一种新工具,如组织诊断/筛查以及组织工程中生物转化的识别/监测。

相似文献

引用本文的文献

2
Digital Lasing Biochip for Tumor-Derived Exosome Analysis.用于肿瘤衍生外泌体分析的数字激光生物芯片
Anal Chem. 2025 Mar 18;97(10):5605-5611. doi: 10.1021/acs.analchem.4c06172. Epub 2025 Mar 5.
7
Cellular Features Revealed by Transverse Laser Modes in Frequency Domain.横向激光模式在频域中揭示的细胞特征。
Adv Sci (Weinh). 2022 Jan;9(1):e2103550. doi: 10.1002/advs.202103550. Epub 2021 Nov 28.
8
Biophotonic probes for bio-detection and imaging.用于生物检测和成像的生物光子探针。
Light Sci Appl. 2021 Jun 9;10(1):124. doi: 10.1038/s41377-021-00561-2.
10
Virus lasers for biological detection.病毒激光器用于生物探测。
Nat Commun. 2019 Aug 9;10(1):3594. doi: 10.1038/s41467-019-11604-z.

本文引用的文献

1
Lasing in blood.血液中的激光作用。
Optica. 2016 Aug 20;3(8):809-815. doi: 10.1364/OPTICA.3.000809. Epub 2016 Jul 21.
2
Optofluidic chlorophyll lasers.光流体制备叶绿素激光器。
Lab Chip. 2016 Jun 21;16(12):2228-35. doi: 10.1039/c6lc00512h. Epub 2016 May 25.
5
Intracellular microlasers.细胞内微激光器
Nat Photonics. 2015 Sep 1;9(9):572-576. doi: 10.1038/nphoton.2015.129. Epub 2015 Jul 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验