文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Chemophototherapy: An Emerging Treatment Option for Solid Tumors.

作者信息

Luo Dandan, Carter Kevin A, Miranda Dyego, Lovell Jonathan F

机构信息

Department of Biomedical Engineering University at Buffalo State University of New York Buffalo NY 14260.

出版信息

Adv Sci (Weinh). 2016 May 24;4(1):1600106. doi: 10.1002/advs.201600106. eCollection 2017 Jan.


DOI:10.1002/advs.201600106
PMID:28105389
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5238751/
Abstract

Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/5f3b50e1fd34/ADVS-4-0-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/e81e490a3ebe/ADVS-4-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/333d9382bc4c/ADVS-4-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/57501d101b83/ADVS-4-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/95d2e590fdbb/ADVS-4-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/4a9e8c5e0121/ADVS-4-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/9eff2b40b971/ADVS-4-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/95b6b0bb468e/ADVS-4-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/70a803ba54ac/ADVS-4-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/dff103c96655/ADVS-4-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/0ed019bffd40/ADVS-4-0-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/e024fcbffde9/ADVS-4-0-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/54e6de8244e0/ADVS-4-0-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/9d97e46a661c/ADVS-4-0-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/5f3b50e1fd34/ADVS-4-0-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/e81e490a3ebe/ADVS-4-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/333d9382bc4c/ADVS-4-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/57501d101b83/ADVS-4-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/95d2e590fdbb/ADVS-4-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/4a9e8c5e0121/ADVS-4-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/9eff2b40b971/ADVS-4-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/95b6b0bb468e/ADVS-4-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/70a803ba54ac/ADVS-4-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/dff103c96655/ADVS-4-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/0ed019bffd40/ADVS-4-0-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/e024fcbffde9/ADVS-4-0-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/54e6de8244e0/ADVS-4-0-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/9d97e46a661c/ADVS-4-0-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a742/5238751/5f3b50e1fd34/ADVS-4-0-g014.jpg

相似文献

[1]
Chemophototherapy: An Emerging Treatment Option for Solid Tumors.

Adv Sci (Weinh). 2016-5-24

[2]
Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy.

Acta Biomater. 2022-7-1

[3]
Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power.

ACS Appl Mater Interfaces. 2019-1-30

[4]
Two Laser Treatments Can Improve Tumor Ablation Efficiency of Chemophototherapy.

Pharmaceutics. 2021-12-17

[5]
Tumor-Targeting HO-Responsive Photosensitizing Nanoparticles with Antiangiogenic and Immunogenic Activities for Maximizing Anticancer Efficacy of Phototherapy.

ACS Appl Bio Mater. 2021-5-17

[6]
Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy.

Acta Biomater. 2017-2

[7]
Targeted Delivery of Functionalized Upconversion Nanoparticles for Externally Triggered Photothermal/Photodynamic Therapies of Brain Glioblastoma.

Theranostics. 2018-2-4

[8]
Short Drug-Light Intervals Improve Liposomal Chemophototherapy in Mice Bearing MIA PaCa-2 Xenografts.

Mol Pharm. 2018-4-2

[9]
Dynamically assembled nanomedicine based on host-guest molecular recognition for NIR laser-excited chemotherapy and phototheranostics.

Acta Biomater. 2023-9-15

[10]
Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography.

Acta Biomater. 2016-4-16

引用本文的文献

[1]
Carrier-free delivery of nucleic acid and photosensitizer nanoparticles for enhanced photodynamic and gene antitumour therapy.

Fundam Res. 2024-3-28

[2]
Biocompatible and Biodegradable Nanocarriers for Targeted Drug Delivery in Precision Medicine.

Biomimetics (Basel). 2025-7-1

[3]
Targeted Dual-Responsive Liposomes Co-Deliver Jolkinolide B and Ce6 to Synergistically Enhance the Photodynamic/Immunotherapy Efficacy in Gastric Cancer through the PANoptosis Pathway.

Adv Sci (Weinh). 2025-8

[4]
Harnessing engineered extracellular vesicles for enhanced therapeutic efficacy: advancements in cancer immunotherapy.

J Exp Clin Cancer Res. 2025-5-2

[5]
Phototherapy in cancer treatment: strategies and challenges.

Signal Transduct Target Ther. 2025-4-2

[6]
Cancer Photodynamic Therapy Enabled by Water-Soluble Chlorophyll Protein.

ACS Appl Mater Interfaces. 2025-3-19

[7]
Quantitative Fluorescence Imaging of Porphyrin Phospholipid Photobleaching and Light Activated Liposomal Doxorubicin Release Using Wide-field and Laparoscopic SFDI in an Ovarian Cancer Model.

Res Sq. 2025-2-19

[8]
Engineering photodynamics for treatment, priming and imaging.

Nat Rev Bioeng. 2024-9

[9]
NIR Triggered Bionic Bilayer Membrane-Encapsulated Nanoparticles for Synergistic Photodynamic, Photothermal and Chemotherapy of Cervical Cancer.

Int J Nanomedicine. 2025-1-6

[10]
Supramolecular nanotherapeutics based on cucurbiturils.

J Nanobiotechnology. 2024-12-23

本文引用的文献

[1]
Emerging applications of porphyrins in photomedicine.

Front Phys. 2015-4

[2]
Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities.

Pharmaceuticals (Basel). 2010-5-14

[3]
Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids.

Small. 2016-6

[4]
Active Tumor Permeation and Uptake of Surface Charge-Switchable Theranostic Nanoparticles for Imaging-Guided Photothermal/Chemo Combinatorial Therapy.

Theranostics. 2016-1-1

[5]
Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor.

ACS Nano. 2016-2-15

[6]
A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways.

Nat Nanotechnol. 2016-4

[7]
A Phase I Study of Light Dose for Photodynamic Therapy Using 2-[1-Hexyloxyethyl]-2 Devinyl Pyropheophorbide-a for the Treatment of Non-Small Cell Carcinoma In Situ or Non-Small Cell Microinvasive Bronchogenic Carcinoma: A Dose Ranging Study.

J Thorac Oncol. 2016-2

[8]
Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin-Phospholipid Liposomes.

Mol Pharm. 2016-2-1

[9]
Photoresponsive nanoparticles for drug delivery.

Nano Today. 2015-8-1

[10]
Development of a Graphene Oxide Nanocarrier for Dual-Drug Chemo-phototherapy to Overcome Drug Resistance in Cancer.

ACS Appl Mater Interfaces. 2015-12-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索