Suppr超能文献

微创胶囊全内镜检查的未来:机器人精准度、无线成像与人工智能驱动的见解。

The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights.

作者信息

Mascarenhas Miguel, Martins Miguel, Afonso João, Ribeiro Tiago, Cardoso Pedro, Mendes Francisco, Andrade Patrícia, Cardoso Helder, Ferreira João, Macedo Guilherme

机构信息

Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal.

WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal.

出版信息

Cancers (Basel). 2023 Dec 15;15(24):5861. doi: 10.3390/cancers15245861.

Abstract

In the early 2000s, the introduction of single-camera wireless capsule endoscopy (CE) redefined small bowel study. Progress continued with the development of double-camera devices, first for the colon and rectum, and then, for panenteric assessment. Advancements continued with magnetic capsule endoscopy (MCE), particularly when assisted by a robotic arm, designed to enhance gastric evaluation. Indeed, as CE provides full visualization of the entire gastrointestinal (GI) tract, a minimally invasive capsule panendoscopy (CPE) could be a feasible alternative, despite its time-consuming nature and learning curve, assuming appropriate bowel cleansing has been carried out. Recent progress in artificial intelligence (AI), particularly in the development of convolutional neural networks (CNN) for CE auxiliary reading (detecting and diagnosing), may provide the missing link in fulfilling the goal of establishing the use of panendoscopy, although prospective studies are still needed to validate these models in actual clinical scenarios. Recent CE advancements will be discussed, focusing on the current evidence on CNN developments, and their real-life implementation potential and associated ethical challenges.

摘要

在21世纪初,单摄像头无线胶囊内镜(CE)的引入重新定义了小肠研究。随着双摄像头设备的发展,这一进程得以延续,双摄像头设备首先用于结肠和直肠,随后用于全肠道评估。磁控胶囊内镜(MCE)进一步推动了这一进展,特别是在配备机械臂辅助时,旨在加强胃部评估。事实上,由于CE能够对整个胃肠道(GI)进行全面可视化,尽管其操作耗时且存在学习曲线,但在进行了适当的肠道清洁后,微创胶囊全内镜检查(CPE)可能是一种可行的替代方法。人工智能(AI)的最新进展,特别是用于CE辅助阅读(检测和诊断)的卷积神经网络(CNN)的开发,可能为实现全内镜检查应用的目标提供缺失的环节,尽管仍需要前瞻性研究在实际临床场景中验证这些模型。本文将讨论CE的最新进展,重点关注CNN发展的当前证据、其在现实生活中的实施潜力以及相关的伦理挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad30/10742312/4226ab83102b/cancers-15-05861-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验