School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States.
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States.
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):759-771. doi: 10.1016/j.bbagen.2017.01.017. Epub 2017 Jan 19.
Depleted oxygen levels, known as hypoxia, causes considerable changes in the cellular metabolism. Hypoxia-inducible factors (HIF) act as the major protagonist in orchestrating manifold hypoxic responses by escaping cellular degradation mechanisms. These complex and dynamic intracellular responses are significantly dependent on the extracellular environment. In this study, we present a detailed model of a hypoxic cellular microenvironment in a microfluidic setting involving HIF hydroxylation.
We have modeled the induction of hypoxia in a microfluidic chip by an unsteady permeation of oxygen from the microchannel through a porous polydimethylsiloxane channel wall. Extracellular and intracellular interactions were modeled with two different mathematical descriptions. Intracellular space is directly coupled to the extracellular environment through uptake and consumption of oxygen and ascorbate similar to cells in vivo.
Our results indicate a sharp switch in HIF hydroxylation behavior with changing prolyl hydroxylase levels from 0.1 to 4.0μM. Furthermore, we studied the effects of extracellular ascorbate concentration, using a new model, to predict its accumulation inside the cell over a relevant physiological range. In different hypoxic conditions, the cellular environment showed a significant dependence on oxygen levels in resulting intracellular response.
Change in hydroxylation behavior and nutrient supplementation can have significant potential in designing novel therapeutic interventions in cancer and ischemia/reperfusion injuries.
The hybrid mathematical model can effectively predict intracellular behavior due to external influences providing valuable directions in designing future experiments.
缺氧,即氧气水平下降,会导致细胞代谢发生重大变化。缺氧诱导因子 (HIF) 通过逃避细胞降解机制,充当协调多种缺氧反应的主要主角。这些复杂和动态的细胞内反应在很大程度上取决于细胞外环境。在这项研究中,我们提出了一个在微流控环境中涉及 HIF 羟化的缺氧细胞微环境的详细模型。
我们通过多孔聚二甲基硅氧烷通道壁从微通道中不稳定地渗透氧气来模拟微芯片中的缺氧诱导。细胞外和细胞内相互作用采用两种不同的数学描述进行建模。细胞内空间通过摄取和消耗氧气和抗坏血酸与细胞内环境直接耦合,类似于体内的细胞。
我们的结果表明,随着脯氨酰羟化酶水平从 0.1 到 4.0μM 的变化,HIF 羟化行为发生了明显的转变。此外,我们使用新模型研究了细胞外抗坏血酸浓度的影响,以预测其在相关生理范围内在细胞内的积累。在不同的缺氧条件下,细胞环境表现出对氧气水平的显著依赖性,从而导致细胞内反应。
羟化行为的改变和营养物质的补充在设计癌症和缺血/再灌注损伤的新治疗干预措施方面具有重要的潜在意义。
混合数学模型可以有效地预测由于外部影响导致的细胞内行为,为设计未来的实验提供了有价值的方向。